Genome editing: US could apply UK's approach to evaluate safety, ethics

February 25, 2016 by David Orenstein
Rapidly advancing technologies allow for editing genetic material in embryos. But will the U.S. allow that? Credit: National Human Genome Research Institute

This winter has provided several dramatic developments in the ongoing debate about whether altering the "germline" - that is, the genome of a new embryo - should be allowed. Employing the technique could permanently alter not just an individual, but also that person's future genetic lineage. In a new research essay in the journal Cell, a duo of medical and legal experts from Brown and Harvard Universities argues that if the U.S. decides to consider the practice, it has a well-drawn regulatory roadmap to follow, courtesy of the United Kingdom.

A year ago, the UK approved a medical treatment called mitochondrial replacement (MR) therapy. The mitochondria are parts within each cell that have their own small genome - distinct from that in the nucleus. Sometimes errant mitochondrial genes can cause serious health diseases. MR therapy proposes to take an egg cell from a woman donor with healthy and to swap in the nucleus of an affected mother-to-be. Once fertilized in the lab with the father's sperm, the resulting embryo would have the donor's healthful mitochondria, and the needed mix of mom and dad's nuclear DNA.

In the Cell essay, Dr. Eli Adashi, former dean of medicine and biological sciences at Brown and Glenn Cohen, professor of law at Harvard, argue that - in which scientists would alter the nuclear genome of an embryo - and MR therapy are similar enough that the principles the UK used to consider and approve MR therapy give the U.S. a ready-made framework for evaluating germline editing.

"Both must contend with breaching the germline barrier," Adashi and Cohen wrote. "Both entail the manipulation of a human embryo. Both must address significant safety concerns. Both must engage a skeptical public. Both must face up to the first-in-human imponderable. Both must grapple with ethical concerns. Both must stamp out unease with technology running unchecked. And both must assuage fears of an altered natural order known to man for millennia."

"It follows that key insights derived from the MR experience may well prove applicable and potentially helpful to deliberating the challenge."

Contradictory context

The essay appears amid rapid-fire bouts of news, some supportive and some discouraging, from the debates swirling around MR therapy and germline editing.

Earlier this month, the U.S. National Academies issued a report advising the U.S. government to follow the UK's lead - for the most part - on MR therapy. A key difference, though, was approving only the transfer of male embryos, because men don't pass on mitochondrial DNA to their offspring.

A few days before that, the UK approved editing the genomes of - those produced but not used for in vitro fertilization - for research purposes. In this case, however, the experimental embryos would be destroyed at the conclusion of the study, again preventing genetic changes from appearing in an individual or being handed down through generations.

If the U.S. government is going to consider therapeutic MR or germline editing like the U.K., Adashi said, it won't actually be able to approve any of the needed preclinical research, because of provisions tucked into to a spending law passed in December 2015. The act prohibits the Food and Drug Administration from using any appropriated monies to accept or approve any project "in which a human embryo is intentionally created or modified to include a heritable genetic modification."

That law passed within two weeks of a major summit on genome editing that brought numerous prominent scientists together in Washington DC to debate the future of the technology.

What the UK did right

In Cell, Adashi and Cohen praise how the UK grappled with five prevailing concerns during the decade-long process that led to approving MR therapy: "the presence of a compelling medical rationale, the safety and efficacy of the preclinical science, the rigor of the ethical framework, the scope of the public engagement, and the soundness of the regulatory constructs."

These same principles could guide assessments of germline editing, they wrote.

The UK, through specially convened expert panels and studies; parliamentary debate; and public forums, meetings and interviews invested heavily in examining MR therapy's ethics, safety and public concerns, they wrote.

"Applying the principles relied upon on in the regulatory evaluation of MR will go a long way towards assuring that the prospect of therapeutic genome editing in the human is the subject of a thorough, inclusive, ethical, safety-minded and confidence-inspiring process," Adashi and Cohen wrote.

Explore further: Guidelines for human genome editing

More information: Going Germline: Mitochondrial Replacement as a Guide to Genome Editing, dx.doi.org/10.1016/j.cell.2016.02.018, www.cell.com/cell/fulltext/S0092-8674%2816%2930120-9

Related Stories

Guidelines for human genome editing

January 21, 2016

Human genome editing for both research and therapy is progressing, raising ethical questions among scientists around the world.

Is UK evaluation of reproductive tech a model for US?

April 10, 2015

When the United Kingdom resoundingly approved mitochondrial replacement therapy in February, it became the first country to give people this new medical option. In parallel it gave the United States serious cause to reflect ...

Recommended for you

New insights on triggering muscle formation

April 26, 2017

Researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) have identified a previously unrecognized step in stem cell-mediated muscle regeneration. The study, published in Genes and Development, provides new ...

Risk of obesity influenced by changes in our genes

April 25, 2017

These changes, known as epigenetic modifications, control the activity of our genes without changing the actual DNA sequence. One of the main epigenetic modifications is DNA methylation, which plays a key role in embryonic ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.