Researchers prove antitumoral potential of a compound derived from olives

Researchers from the universities of Granada, Barcelona and Jaen prove that maslinic acid, a natural triterpene found in high concentrations in the waxy skin of olives is effective in Caco-2 p53-deficient colon adenocarcinoma cells in just a few hours.

Researchers from the University of Granada (UGR), in collaboration with the universities of Barcelona and Jaen, have established the antitumoral nature of maslinic acid (a compound derived from olives) in Caco-2 p53-deficient colon adenocarcinoma in the short term.

Maslinic acid (MA) is a natural triterpene found in high concentrations in the waxy skin of olives, obtained through a method patented by professors Andrés García-Granadados López de Hierro and Andrés Parra Sánchez from the UGR department of Organic Chemistry, and currently used by the company Biomaslinic S.L.

The results of this research, recently published in the renowned PloS ONE magazine, show without a doubt how maslinic acid is capable of inducing the extrinsic cellular death pathway in Caco-2 cells that don't express protein p53 (known for its pro-apoptotic capacity).

In previous work, professor Lupiáñez Cara's research team reported that maslinic acid induces apoptotic cell death via the mitochondrial apoptotic pathway in cancer cell lines.

In the paper published in PloS ONE, the researchers have shown that MA induces apoptosis in Caco-2 colon cancer cells via the extrinsic apoptotic pathway in a dose-dependent manner in the short term (4 hours).

A quick response

Maslinic acid triggers a series of effects associated with apoptosis and increased the levels of the pro-apoptotic protein t-Bid within a few hours of its addition to the culture medium. This triterpene has no effect on the expression of the Bax protein or the release of cytochrome-c (proteins involved in the mitochondrial apoptotic pathway), or on the mitochondrial membrane potential.

This suggests that MA triggered the extrinsic apoptotic pathway in this cell type, as opposed to the intrinsic pathway found in the HT29 colon-cancer cell line (cells which do have the tumor suppressor gene p53 and, as a result, express the .

The results published in PloS ONE suggest that the apoptotic mechanism induced in Caco-2 may be different from that found in HT29 , and that in Caco-2 cells maslinic seems to work independently of the presence of p53. Natural antitumoral agents capable of activating both the extrinsic and intrinsic apoptotic pathways could be of great use in treating colon-cancer of whatever origin.

The studies currently being carried out by the team are focused on finding compounds chemically derived from maslinic and oleanolic acids that are related with anti-proliferative, anti-tumoral and anti-angiogenic tasks as well as pharmacokinetic tasks at different levels (sub-molecular, molecular and cellular), in order to establish both their mechanism of action and the link between the various by-products and their effect on the cells.


Explore further

Newly identified mechanism of p53-induced cell death could aid cancer therapy

More information: Fernando J. Reyes-Zurita et al. Maslinic Acid, a Natural Triterpene, Induces a Death Receptor-Mediated Apoptotic Mechanism in Caco-2 p53-Deficient Colon Adenocarcinoma Cells, PLOS ONE (2016). DOI: 10.1371/journal.pone.0146178
Journal information: PLoS ONE

Citation: Researchers prove antitumoral potential of a compound derived from olives (2016, March 10) retrieved 17 October 2019 from https://medicalxpress.com/news/2016-03-antitumoral-potential-compound-derived-olives.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
4 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more