Fat tissue in energy saving mode

March 31, 2016, Max Planck Society
Active regions of the AgRP neurons in mice brain

Scientists at the Max Planck Institute for Metabolism Research in Cologne have discovered brain cells that not only tell hungry mice to search for food, but also to limit blood sugar use by the brown fat tissue. This could ensure the survival of mice when they cannot find enough to eat.

What happens when we get hungry? How does the brain control energy expenditure? To find answers to these questions a research team led by Jens Brüning, director of the Max Planck Institute for Metabolism Research, analyzed the function of a specific class of in the brain, called AgRP neurons. "These nerve cells are located in the hypothalamus, which can be seen as the brain command center controlling appetite", explains Sophie Steculorum, one of the authors of the study and associate of Brüning. "It has already been known for a few years that these cells control feeding behavior in hunger states".

In the recent study, researchers demonstrated that in mice AgRP neurons use an additional mechanism to regulate the sugar metabolism in the body. "These AgRP neurons tell the body to use less blood sugar when the mouse is hungry and cannot find food", says Johan Ruud, co-author of the study.

Reprogramming the brown fat tissue

The cologne scientists could show that the AgRP neurons are connected with the , also called brown fat. "When the neurons are activated, the cells in this brown fat tissue are reprogrammed – they produce a different set of proteins, for example high levels of myostatin", explains Ruud.

The protein myostatin is usually found in and slows down muscle growth. Now the scientists could show for the first time that myostatin directly controls the sensitivity of the brown fat to insulin, which dictates how the body utilizes .

AgRP neurons in human

AgRP neurons, myostatin and insulin are not only found in mice, but also in humans. Obesity and type-2-diabetes are likely associated with chronic activation of AgRP- neurons, at least in mice. The mechanism could explain why AgRP neurons are connected with those diseases. "Next we want to find out whether the cells also control the sensitivity of brown fat to insulin in humans", explains Steculorum.

Explore further: Of brains and bones: How hunger neurons control bone mass

More information: Sophie M. Steculorum et al. AgRP Neurons Control Systemic Insulin Sensitivity via Myostatin Expression in Brown Adipose Tissue, Cell (2016). DOI: 10.1016/j.cell.2016.02.044

Related Stories

Of brains and bones: How hunger neurons control bone mass

September 24, 2015
In an advance that helps clarify the role of a cluster of neurons in the brain, Yale School of Medicine researchers have found that these neurons not only control hunger and appetite, but also regulate bone mass.

Brain neurons and diet influence onset of obesity and diabetes in mice

September 18, 2012
The absence of a specific type of neuron in the brain can lead to obesity and diabetes in mice report researchers in The EMBO Journal. The outcome, however, depends on the type of diet that the animals are fed.

Turning on blood flow turns on fat-burning brown fat in mice

March 2, 2016
Increasing the blood flow in brown fat causes it to burn more calories in mice and may help treat obesity, a new study in the Journal of Applied Physiology reports.

DREADD-ing your next meal

March 1, 2011
In the face of the growing obesity epidemic, much research has focused on the neuronal control of feeding behavior. Agouti-related protein (AgRP) neurons express three proteins that have been implicated in changes in energy ...

Food intake, a fragile balance between neural pathways

August 24, 2015
A team at the Laboratoire biologie fonctionnelle et adaptative (CNRS/Université Paris Diderot) investigated the relative role of energy needs and "pleasure" of eating in food intake. The researchers studied a group of neurons ...

Study finds why drug for type 2 diabetes makes people fat

March 25, 2015
Medication used to treat patients with type II diabetes activates sensors on brain cells that increase hunger, causing people taking this drug to gain more body fat, according to researchers at Georgia State University, Oregon ...

Recommended for you

Researchers explore new way of killing malaria in the liver

December 8, 2018
In the ongoing hunt for more effective weapons against malaria, international researchers said Thursday they are exploring a pathway that has until now been little studied—killing parasites in the liver, before the illness ...

Study may offer doctors a more effective way to treat neuroblastoma

December 7, 2018
A very large team of researchers, mostly from multiple institutions across Germany, has found what might be a better way to treat patients with neuroblastoma, a type of cancer. In their paper published in the journal Science, ...

Progress made in transplanting pig hearts into baboons

December 6, 2018
A large team of researchers from several institutions in Germany, Sweden, Switzerland and the U.S. has transplanted pig hearts into baboons and kept them alive for an extended period of time. In their paper published in the ...

'Chemo brain' caused by malfunction in three types of brain cells, study finds

December 6, 2018
More than half of cancer survivors suffer from cognitive impairment from chemotherapy that lingers for months or years after the cancer is gone. In a new study explaining the cellular mechanisms behind this condition, scientists ...

Hybrid prevalence estimation: Method to improve intervention coverage estimations

December 6, 2018
LSTM's Professor Joseph Valadez is senior author on a new study published today in the Proceedings of the National Academy of Sciences, which outlines proposals for a more accurate estimator of health data.

World's smallest wearable device warns of UV exposure, enables precision phototherapy

December 5, 2018
The world's smallest wearable, battery-free device has been developed by Northwestern Medicine and Northwestern's McCormick School of Engineering scientists to measure exposure to light across multiple wavelengths, from the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.