Researchers unlock mechanisms in the brain that separate food consumption from cravings

March 8, 2016, University of Missouri-Columbia
Credit: public domain

Researchers investigating eating disorders often study chemical and neurological functions in the brain to discover clues to overeating. Understanding non-homeostatic eating—or eating that is driven more by palatability, habit and food cues—and how it works in the brain may help neuroscientists determine how to control cravings, maintain healthier weights and promote healthier lifestyles. Scientists at the University of Missouri recently discovered the chemical circuits and mechanisms in the brain that separate food consumption from cravings. Knowing more about these mechanisms could help researchers develop drugs that reduce overeating.

"Non-homeostatic eating can be thought of as eating dessert after you've eaten an entire meal," said Kyle Parker, a former grad student and investigator in the MU Bond Life Sciences Center. "I may know that I'm not hungry, but this dessert is delicious so I'm going to eat it anyway. We're looking at what neural circuitry is involved in driving that behavior."

Matthew J. Will, an associate professor of psychological sciences in the MU College of Arts and Science, a research investigator in the Bond Life Sciences Center and Parker's adviser, says for behavior scientists, eating is described as a two-step process called the appetitive and consummatory phases.

"I think of the neon sign for a donut shop—the logo and the aroma of warm glazed donuts are the environmental cues that kick start the craving, or appetitive, phase," Will said. "The consummatory phase is after you have that donut in hand and eat it."

Parker studied the behavior patterns of laboratory rats by activating the 's pleasure center, a hotspot in the brain that processes and reinforces messages related to reward and pleasure. He then fed the rats a cookie dough-like diet to exaggerate their feeding behaviors and found that the rats ate twice as much as usual. When he simultaneously inactivated another part of the brain called the basolateral amygdala, the rats stopped binge eating. They kept returning to their food baskets in search of more, but only consumed a normal amount.

"It seemed as if the rats still craved the dough," Will said. "They kept going back for food but simply didn't eat. We found that we had interrupted the part of the brain that's specific to feeding—the circuit attached to actual eating—but not the craving. In essence, we left that craving intact."

To find out what was happening in the brain during cravings, Parker set up a spin-off experiment. Like before, he switched on the region of the brain associated with reward and pleasure and inactivated the basolateral amygdala in one group of rats but not the other. This time, however, he limited the amount of the high fat diet the rats had access to so that both groups ate the same amount.

Outwardly, both groups of rats displayed the same feeding behaviors. They ate a portion of food, but kept going back and forth to their food baskets. However, inside the brain, Parker saw clear differences. Rats with activated nucleus accumbens showed increased dopamine neuron activity, which is associated with motivated approach behavior.

The team also found that the state of the basolateral amygdala had no effect on dopamine signaling levels. However, in a region of the brain called the hypothalamus, Parker saw elevated levels of orexin-A, a molecule associated with appetite, only in with activated basolateral amygdala.

"We showed that what could be blocking the consumption behavior is this block of the orexin behavior," Parker said.

"The results reinforced the idea that dopamine is involved in the approach—or the craving phase—and orexin-A in the consumption," Will said.

The team believes that these findings could lead to a better understanding of the different aspects of overeating and drug addiction. By revealing the independent circuitry of craving vs. the actual consumption or drug taking, this could lead to potential drug treatments that are more specific and have less unwanted side effects.

Parker and Will's study, "Neural activation patterns underlying influence on intra-accumbens opioid-driven consummatory versus appetitive high-fat feeding behaviors in the rat," recently was published in Behavioral Neuroscience. Research was funded in part by the National Institute of Drug Abuse (DA024829). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agency.

Explore further: Extremely active rats become lazy when they artificially receive 'runners' high'

Related Stories

Extremely active rats become lazy when they artificially receive 'runners' high'

October 6, 2015
Past research has shown that the pleasure and reward centers of the brain are activated similarly by dangerous drugs as well as by exercise, which is why therapies have been developed for drug addicts that include lots of ...

Scientists discover 'back door' into the brain that circumvents self-control in addicts

January 12, 2016
Individuals addicted to cocaine may have difficulty in controlling their addiction because of a previously-unknown 'back door' into the brain, circumventing their self-control, suggests a new study led by the University of ...

Brain circuits involved in cravings unraveled

November 11, 2015
Dartmouth researchers studying rats have discovered that activation of designer neural receptors can suppress cravings in a brain region involved in triggering those cravings.

Hunger hormone is boosted by restricted meal times

December 15, 2015
Rats with restricted feeding schedules learn to eat more, helped by the "hunger hormone" ghrelin, according to new research from the University of Southern California.

New insights on how cocaine changes the brain

November 25, 2015
The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Recommended for you

How do we lose memory? A STEP at a time, researchers say

March 23, 2018
In mice, rats, monkeys, and people, aging can take its toll on cognitive function. A new study by researchers at Yale and Université de Montréal reveal there is a common denominator to the decline in all of these species—an ...

Brain's tiniest blood vessels trigger spinal motor neurons to develop

March 23, 2018
A new study has revealed that the human brain's tiniest blood vessels can activate genes known to trigger spinal motor neurons, prompting the neurons to grow during early development. The findings could provide insights into ...

Being hungry shuts off perception of chronic pain

March 22, 2018
Pain can be valuable. Without it, we might let our hand linger on a hot stove, for example. But longer-lasting pain, such as the inflammatory pain that can arise after injury, can be debilitating and costly, preventing us ...

From signal propagation to consciousness: New findings point to a potential connection

March 22, 2018
Researchers at New York University have discovered a novel mechanism through which information can be effectively transmitted across many areas in the brain—a finding that offers a potentially new way of understanding how ...

Using simplicity for complexity—new research sheds light on the perception of motion

March 22, 2018
A team of biologists has deciphered how neurons used in the perception of motion form in the brain of a fly —a finding that illustrates how complex neuronal circuits are constructed from simple developmental rules.

Focus on early stage of illness may be key to treating ALS, study suggests

March 22, 2018
A new kind of genetically engineered mouse and an innovation in how to monitor those mice during research have shed new light on the early development of an inherited form of amyotrophic lateral sclerosis (ALS).


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.