New sensitive method for early detection of amyloidosis in humans

March 21, 2016, Linköping University

A team of scientists at Sweden's Linköping University has developed a molecular probe that can detect an array of different amyloid deposits in several human tissues. This new probe is extremely sensitive and was used at very low concentrations to correctly identify every positive amyloidosis sample when compared to the traditional clinical tests. The probe also picked up some amyloidosis signals that the traditional methods were unable to detect. This result means that the new probe could be used to detect amyloidosis before symptoms present, leading to faster and hence more effective treatment.

Amyloidosis is a general term for several different types of disease. Aggregates of form and deposit in different tissues which can affect the normal function. As the disease progresses and amyloid deposits grow, tissues become irreversibly damaged. Amyloid deposits can be found in many different organs leading to a wide range of possible symptoms and making diagnosis challenging.

To date, the primary mode of diagnosis for amyloidosis has been the Congo red stain. However, evidence from the Linköping team, presented in Amyloid Journal show that their new is much more sensitive, being able to detect small in samples that were previously determined to be amyloid-free.

"Given the sensitivity of the probe, we think this would make an excellent complement to traditional methods and could eventually be a replacement", says lead investigator Per Hammarström, professor at Linköping University.

According to the U.S. Office of Rare Diseases (ORD), a subsidiary of the National Institute of Health (NIH), amyloidosis is a rare disease, affecting less than 200,000 people in the U.S.. However, The Amyloidosis Foundation suspects that the figures are underreported and that amyloidosis is not that rare - just rarely diagnosed. A more sensitive diagnostic method would help to uncover the reality of the situation.

The Linköping team are optimistic about the use of the probe.

"It could also be used to identify new types of amyloids and presymptomatic patients who are at risk of developing the disease", says Hammarström and collaborator professor Peter Nilsson.

Research is continuing in this important field. In the future, the researchers hope to apply this to other diseases where amyloids are present and develop real-time, non-invasive diagnostic probes.

Explore further: Evidence for a remarkable structural diversity of amyloid fibrils in human and animal tissue

More information: Daniel Sjölander et al. Establishing the fluorescent amyloid ligand h-FTAA for studying human tissues with systemic and localized amyloid, Amyloid (2016). DOI: 10.3109/13506129.2016.1158159

Related Stories

Evidence for a remarkable structural diversity of amyloid fibrils in human and animal tissue

March 15, 2016
Formation of amyloid fibrils is a characteristic feature of neurogenerative diseases like Alzheimer's. As published in the journal Angewandte Chemie, German and American scientists have found evidence that these fibrils adopt ...

Amyloid imaging shows promise for detecting cardiac amyloidosis

February 4, 2013
While amyloid imaging may now be most associated with detecting plaques in the brain, it has the potential to change the way cardiac amyloidosis is diagnosed. According to first-of-its-kind research published in the February ...

Improving treatment for systemic amyloidosis

July 16, 2015
A potential new approach to treat systemic amyloidosis, invented at UCL and being developed by GlaxoSmithKline (GSK), marks the start of a successful and innovative academic-industry collaboration.

Amyloid scan of the heart predicts major cardiac events

June 8, 2015
Amyloid build-up is commonly talked about in relation to Alzheimer's disease, but amyloidosis can be found throughout the body. An excessive accumulation of these insoluble proteins could cause a heart attack or even death. ...

Amyloid formation may link Alzheimer disease and type 2 diabetes

February 17, 2015
The pathological process amyloidosis, in which misfolded proteins (amyloids) form insoluble fibril deposits, occurs in many diseases, including Alzheimer disease (AD) and type 2 diabetes mellitus (T2D). However, little is ...

Recommended for you

Not being aware of memory problems predicts onset of Alzheimer's disease

February 15, 2018
Doctors who work with individuals at risk of developing dementia have long suspected that patients who do not realize they experience memory problems are at greater risk of seeing their condition worsen in a short time frame, ...

Researchers successfully reverse Alzheimer's disease in mouse model

February 14, 2018
A team of researchers from the Cleveland Clinic Lerner Research Institute have found that gradually depleting an enzyme called BACE1 completely reverses the formation of amyloid plaques in the brains of mice with Alzheimer's ...

Poor fitness linked to weaker brain fiber, higher dementia risk

February 14, 2018
Scientists have more evidence that exercise improves brain health and could be a lifesaving ingredient that prevents Alzheimer's disease.

Compound prevents neurological damage, shows cognitive benefits in mouse model of Alzheimer's disease

February 7, 2018
The supplement nicotinamide riboside (NR) – a form of vitamin B3 – prevented neurological damage and improved cognitive and physical function in a new mouse model of Alzheimer's disease. The results of the study, conducted ...

Positive attitudes about aging reduce risk of dementia in older adults

February 7, 2018
Research has shown that older persons who have acquired positive beliefs about old age from their surrounding culture are less likely to develop dementia. This protective effect was found for all participants, as well as ...

One in five older adults experience brain network weakening following knee replacement surgery

February 7, 2018
A new University of Florida study finds that 23 percent of adults age 60 and older who underwent a total knee replacement experienced a decline in activity in at least one region of the brain responsible for specific cognitive ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.