Stress pushes cells to die when gatekeeper of calcium use in mitochondria is dysfunctional

March 9, 2016

Malfunctioning mitochondria—the power plants in cells—are behind the damage caused by strokes, heart attacks, and neurodegenerative diseases, but little has been known about how to stop these reactors from melting down, destroying cells and tissue. Mitochondria also take up calcium, which regulates energy production. Now, online in Nature Communications, researchers at Thomas Jefferson University report important insights into how mitochondria are naturally protected against taking up too much calcium, which can force cells to die.

Their findings offer a novel avenue for creating drugs designed to stop mitochondria from demolishing cells during a time of stress, such as from a heart attack, says one of the study's senior authors, Professor György Hajnóczky, M.D., Ph.D., director of the MitoCare Center at Thomas Jefferson University.

"Mitochondrial failure causes much of the injury seen in the heart and brain during attacks and strokes, and inhibiting the brief overload of that we see during these events could substantially reduce long term damage," he says. "This might become a novel and exciting treatment strategy."

Eventually, mitochondrial therapy could be developed to help treat neurodegenerative diseases, which are characterized by dysfunctional energy production, researchers say.

Research on mitochondria has recently undergone a renaissance, leading to establishment of the MitoCare Center at Jefferson University in 2014. Not only do mitochondria provide much of the energy for the life-sustaining cellular machinery but researchers have found they also help the cell make sense of signals from the environment that can change the cell's behavior. They are also realizing that mitochondrial dysfunction can signal the death of the cell, which underlies a wide range of disorders.

In this study, four research groups headed by Drs. György Csordás, György Hajnóczky, Jan Hoek and Erin L. Seifert, all from the MitoCare Center, used cell and animal studies to investigate the flow of calcium in and out of the squiggly looking cellular .

Several years ago, Dr. Hajnóczky and his team revealed the function of MICU1 (Mitochondrial Calcium Uptake 1). They found this protein controls the channel (MCU, mitochondrial Calcium Uniporter) that allows calcium to enter mitochondria. MICU1 acts as a gatekeeper preventing continuous intake but allowing calcium signals in to increase .

The goal of the present research project was to understand the physiological and pathological role of MICU1. To find out what happens when mitochondrial is not properly regulated, the researchers developed the first animal model for loss of MICU1. They found that mice without MICU1 develop normally in utero, but die shortly after they are born. "These pups can't handle the stress involved in switching from intra-uterine life to extra-uterine life," Dr. Hajnóczky says.

They then developed adult mice in which MICU1 was removed only in the liver, an organ that can normally regenerate itself when damaged. The researchers discovered, in these mice, that the basic function of the liver was fine, but when the liver was exposed to stress (a portion was surgically removed), the liver could not regrow as it normally does because too much calcium flowed into cellular mitochondria, which triggered tissue death. "When stressed, and without the MICU1 calcium gatekeeper, the liver cells died," says Dr. Hajnóczky.

"The heart, the brain and the liver are very energy dependent, and can quickly get into trouble if mitochondria are dysfunctional," he says. "For example, a sudden loss of oxygen occurs in heart cells during a heart attack and in brain cells during a stroke also represent a stress for mitochondria. Due to the ensuing energy deficit, calcium accumulates in the cells and mitochondria are then flooded with calcium. If mitochondria cannot keep this calcium in check, they fall apart causing the to die.

"There are also indications of mitochondrial calcium dysregulation in a variety of , including Alzheimer's disease, Huntington's disease, and Lou Gehrig's disease," Dr. Hajnóczky adds. "These diseases don't necessarily begin in the mitochondria, but the damage they cause is amplified in these organelles."

"Inhibiting mitochondrial calcium uptake as a short term treatment could offer real promise for acute heart and brain attacks. It remains unpredictable in complex and chronic neurodegeneration whether a simple inhibition of calcium uptake would be effective. Rather strengthening both the sophisticated gatekeeping as well as the function of MICU1, might be sensible," he says.

The team has already begun to screen potential agents while continuing to tease apart the biological roots of MICU1 biology.

Explore further: Heart attack treatment hypothesis 'busted'

More information: Antony, A. N. et al. MICU1 regulation of mitochondrial Ca2 þ uptake dictates survival and tissue regeneration. Nat. Commun. 7:10955 DOI: 10.1038/ncomms10955 (2016).

Related Stories

Heart attack treatment hypothesis 'busted'

July 6, 2015
Researchers have long had reason to hope that blocking the flow of calcium into the mitochondria of heart and brain cells could be one way to prevent damage caused by heart attacks and strokes. But in a study of mice engineered ...

Researchers identifie gatekeeper protein, new details on cell's power source

October 25, 2012
Researchers at Temple University's Center for Translational Medicine and the University of Pennsylvania have identified a protein that serves as a gatekeeper for controlling the rush of calcium into the cell's power source, ...

Blocking transfer of calcium to cell's powerhouse selectively kills cancer cells

March 3, 2016
Inhibiting the transfer of calcium ions into the cell's powerhouse is specifically toxic to cancer cells, according to an article published this week in Cell Reports by researchers from the Perelman School of Medicine at ...

Protecting the heart: Cardiac heme oxygenase regulates injury response

February 25, 2016
The constant beating of the heart requires an enormous output of energy. To meet this demand, cardiomyocytes are loaded with mitochondria, organelles that generate the majority of energy for cells. These mitochondria are ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

emilymoore682
not rated yet Mar 09, 2016
In times of stress the human body produces the hormone adrenaline which makes the search for an exit. Stress in small quantities needed by all because it makes you think and look for a way out of the problem. Without stress, life would be boring. But on the other hand, if the stress becomes too much of the body weakens, it loses strength and the ability to solve problems. For more info about stress please visit http://undepress....ieve-it/

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.