Study identifies memory suppressor gene, may hold key to new Alzheimer's treatments

April 14, 2016, The Scripps Research Institute

While research has identified hundreds of genes required for normal memory formation, genes that suppress memory are of special interest because they offer insights into how the brain prioritizes and manages all of the information, including memories, that it takes in every day. These genes also provide clues for how scientists might develop new treatments for cognitive disorders such as Alzheimer's disease.

Scientists from the Florida campus of The Scripps Research Institute (TSRI) have identified a unique suppressor gene in the brain cells of Drosophila, the common fruit fly, a widely recognized substitute for human memory studies.

The study, which was led by Ron Davis, chair of TSRI's Department of Neuroscience, was published April 14, 2016, in the journal Neuron.

Davis and his colleagues screened approximately 3,500 Drosophila genes and identified several dozen new memory suppressor genes that the brain has to help filter information and store only important parts. One of these suppressor genes, in particular, caught their attention.

"When we knocked out this gene, the flies had a better memory—a nearly two-fold better memory," said Davis. "The fact that this gene is active in the same pathway as several currently used for the treatment of Alzheimer's disease suggests it could be a potential new therapeutic target."

When the scientists disabled this gene, known as DmSLC22A, flies' memory of smells (the most widely studied form of memory in this model) was enhanced—while overexpression of the gene inhibited that same memory function.

"Memory processes and the genes that make the required for memory are evolutionarily conserved between mammals and fruit flies," said Research Associate Ze Liu, co-first author of the study. "The majority of human cognitive disease-causing have the same functional genetic counterparts in flies."

The gene in question belongs to a family of "plasma membrane transporters," which produce proteins that move molecules, large and small, across cell walls. In the case of DmSLC22A, the new study indicates that the gene makes a protein involved in moving neurotransmitter molecules from the synaptic space between neurons back into the neurons. When DmSLC22A functions normally, the protein removes the neurotransmitter acetylcholine from the synapse, helping to terminate the synaptic signal. When the protein is missing, more acetylcholine persists in the synapse, making the synaptic signal stronger and more persistent, leading to enhanced memory.

"DmSLC22A serves as a bottleneck in memory formation," said Research Associate Yunchao Gai, the study's other co-first author. "Considering the fact that plasma transporters are ideal pharmacological targets, drugs that inhibit this protein may provide a practical way to enhance memory in individuals with memory disorders."

The next step, Davis added, is to develop a screen for inhibitors of this pathway that, independently or in concert with other treatments, may offer a more effective way to deal with the problems of memory loss due to Alzheimer's and other neurodegenerative diseases.

"One of the major reasons for working with the fly initially is to identify brain proteins that may be suitable targets for the development of cognitive enhancers in humans," said Davis. "Otherwise, we would be guessing in the dark as to which of the more than 23,000 human proteins might be appropriate targets."

Explore further: Scientists identify a memory suppressor that may play a role in autism

More information: "Drosophila SLC22A Transporter is a Memory Suppressor Gene that Influences Cholinergic Neurotransmission to the Mushroom Bodies," Neuron, 2016.

Related Stories

Scientists identify a memory suppressor that may play a role in autism

February 11, 2016
Discovered only in the 1990s, microRNAs are short molecules that work within virtually all cells. Typically, each one functions as a "dimmer switch" for the expression of one or more genes, regulating a wide variety of cellular ...

Scientists find a defect responsible for memory impairment in aging

March 3, 2015
Scientists from the Florida campus of The Scripps Research Institute have discovered a mechanism that causes long-term memory loss due to age in Drosophila, the common fruit fly, a widely recognized substitute for human memory ...

Small RNAs found to play important roles in memory formation

June 30, 2015
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have found that a type of genetic material called "microRNA" plays surprisingly different roles in the formation of memory in animal models. In some ...

Scientists pinpoint proteins vital to long-term memory

September 12, 2013
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have found a group of proteins essential to the formation of long-term memories.

Scientists discover a missing link between tau and memory loss

March 31, 2016
Scientists have long known that the protein tau is involved in dementia, but how it hinders cognitive function has remained uncertain. In a study published in the journal Neuron, researchers at the Gladstone Institutes reveal ...

Study lays groundwork for potential bipolar disorder therapies

March 9, 2016
Bipolar disorder, which affects nearly eight million Americans, takes a toll not only on patients, but also on their families and communities.

Recommended for you

New ALS therapy in clinical trials—drug extends survival, reverses some neuromuscular damage in animals

July 16, 2018
About 20,000 people in the United States are living with amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease. The invariably fatal disease kills the nerve cells that control walking, eating and breathing. ...

Convergence of synaptic signals is mediated by a protein critical for learning and memory

July 16, 2018
Inside the brain, is a complex symphony of perfectly coordinated signaling. Hundreds of different molecules amplify, modify and carry information from tiny synaptic compartments all the way through the entire length of a ...

Synapse-specific plasticity governs the identity of overlapping memory traces

July 16, 2018
Memories are formed through long-term changes in synaptic efficacy, a process known as synaptic plasticity, and are stored in the brain in specific neuronal ensembles called engram cells, which are activated during corresponding ...

'Concussion pill' shows promise in pre-clinical pilot study

July 16, 2018
In 2016, funded by a $16 million grant from Scythian, the multidisciplinary Miller School team embarked on a five-year study to examine the effects of combining CBD (a cannabinoid derivative of hemp) with an NMDA antagonist ...

Fetal gene therapy prevents fatal neurodegenerative disease

July 16, 2018
A fatal neurodegenerative condition known as Gaucher disease can be prevented in mice following fetal gene therapy, finds a new study led by UCL, the KK Women's and Children's Hospital and National University Health System ...

Rehabilitating the mind could improve outcomes after spinal cord injury

July 16, 2018
A study led by Heriot-Watt University has explored how individuals with spinal cord injuries perceive the space around them. The findings suggest additions are needed to the rehabilitation programmes adopted post-injury to ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.