Scientists find 'secret sauce' for personalized, functional insulin-producing cells

April 12, 2016
Salk scientists have created successful patient-derived pancreatic beta cells able to respond to sugar (glucagon, blue) and produce insulin (red) accordingly. These cells (nuclei, blue) could be transplanted back into patients for a potential new diabetes therapy. Credit: Salk Institute

Salk scientists have solved a longstanding problem in the effort to create replacement cells for diabetic patients. The team uncovered a hidden energy switch that, when flipped, powers up pancreatic cells to respond to glucose, a step that eluded previous research. The result is the production of hundreds of millions of lab-produced human beta cells—able to relieve diabetes in mice.

For more than a decade, scientists across the globe strived to replace failing linked to immune destruction in children (type 1 ) or obesity-associated diabetes in adults (type 2 diabetes). Although cells made in a dish were able to produce insulin, they were sluggish or simply unable to respond to glucose.

"We found the missing energy switch needed to produce robust and functional human beta cells, potentially turning this discovery into a viable treatment for human diabetes," says Ronald Evans, co-senior author and director of the Gene Expression Laboratory at Salk. The new work was published in Cell Metabolism on April 12, 2016.

The Salk technology begins with induced (iPSC), a stem cell technique where tissue from a patient—such as skin—is reprogrammed into other types of cells, such as from the pancreas. This step yields the pre-beta cells, which produce insulin but are not yet functional. While several research groups reached this juncture, the road forward to functional cells was not clear.

Salk scientists found a master genetic switch (ERR-gamma) critical for prompting pancreatic cells to successfully detect and respond to sugar in the blood. This discovery allows the team to grow patient-derived, functional beta cells for transplantation in a potential new diabetes therapy. Credit: Salk Institute

"Pancreatic beta cells must be able to do two things to work effectively: respond to glucose and produce insulin," says Evans, who is also a Howard Hughes Medical Institute investigator and the March of Dimes Chair in Molecular and Developmental Biology. "No one had been able to figure out how to make from human patients that can do both until now."

The Salk team closely studied the basic biology of a beta cell and uncovered several molecular switches, called transcription factors, that were switched off but might control the transition to a fully functional state. The 'secret sauce,' the Salk team found, was one particular switch the Evans lab had studied for years for its role in cell signaling. This protein switch, called ERR-gamma, turned out to be crucial to awaken silent beta-like cells that could now respond to glucose and release insulin accordingly.

"This advance will result in a better controlled insulin response than currently available treatments," says Michael Downes, co-senior author and a Salk senior staff scientist. "Previously there was nothing known about the maturation process in beta cells. We peeked into that black box and now we know what's going on." He adds that the team's technique is an easy, fast and inexpensive way to make transplantable human pancreatic beta cells in a dish that genetically match patients.

The video will load shortly.
This discovery allows the team to grow patient-derived, functional beta cells for transplantation in a potential new diabetes therapy. Credit: Salk Institute

"When we added ERR-gamma to pre-diabetic beta cells in a dish, we successfully created a glucose-responsive, beta-like cell," says Eiji Yoshihara, first author of the paper and a Salk research associate. "And when we remove ERR-gamma from animals, the glucose response is eliminated, proving that the factor is the master regulator of maturation for the beta cell."

But can these beta cells successfully treat diabetes? The Salk researchers found that, indeed, when the matured were transplanted into type 1 diabetic mice, the procedure quickly rescued their diabetes. "Hopefully, this mirrors what would happen in the clinic—after someone is diagnosed with diabetes they could potentially get this treatment," says Evans. "It's exciting because it suggests that cells in a dish are ready to go."

The researchers hope to move to human trials within the next few years.

This visual abstract depicts the Yoshihara et al. report that the postnatal maturation of pancreatic b cells necessary for maximal glucosestimulated insulin secretion is coordinated by the estrogen-related receptor g (ERRg). ERRg drives a transcriptional program promoting mitochondrial oxidative metabolism, and its expression in iPSC-derived b-like cells generates functional b cells in vitro. Credit: Yoshihara et al./Cell Metabolism 2016

Explore further: New non-invasive method for studying the development of insulin-producing cells

More information: Cell Metabolism, Yoshihara et al.: "ERRγ is required for the metabolic maturation of therapeutically functional glucose-responsive β cells" dx.doi.org/10.1016/j.cmet.2016.03.005

Related Stories

New non-invasive method for studying the development of insulin-producing cells

April 5, 2016
Researchers at Karolinska Institutet and Nanyang Technological University in Singapore have produced a unique method for monitoring the development of insulin-producing cells, which play a key part in regulating blood glucose ...

Insulin-producing pancreatic cells created from human skin cells

January 6, 2016
Scientists at the Gladstone Institutes and the University of California, San Francisco (UCSF) have successfully converted human skin cells into fully-functional pancreatic cells. The new cells produced insulin in response ...

New procedure could improve success rate of cell transplant to cure type 1 diabetes

April 4, 2016
New research suggests pretreating cells with a peptide hormone may improve the success rate of pancreatic islet cell transplants, a procedure that holds great promise for curing Type 1 diabetes. The results will be presented ...

Engineered mini-stomachs produce insulin in mice

February 18, 2016
Researchers have spent decades trying to replace the insulin-producing pancreatic cells, called beta cells, that are lost in diabetes. Now a team of researchers, reporting Feb. 18, 2016 in Cell Stem Cell, have discovered ...

A pharmacological approach to improving pancreatic beta cell growth and function

March 17, 2016
β cells in pancreatic islets are responsible for producing insulin, which is essential to regulate blood glucose homeostasis. In type 1 diabetes, pancreatic β cells are destroyed due to an autoimmune attack, whereas in ...

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.