Tiny microscopes reveal hidden role of nervous system cells

April 28, 2016, Salk Institute
Salk Institute scientists show the surprising involvement of cells called astrocytes in spinal sensory processing. Here, astrocytes (genetically labeled in green) in a spinal cord (co-stained with glial fibrillary acidic protein, red, to visualize its outline) react to the activity of sensation with their own chemical signals. Credit: Salk Institute

A microscope about the size of a penny is giving scientists a new window into the everyday activity of cells within the spinal cord. The innovative technology revealed that astrocytes—cells in the nervous system that do not conduct electrical signals and were traditionally viewed as merely supportive—unexpectedly react to intense sensation.

The new miniaturized microscope and related imaging methods, described by Salk Institute scientists on April 28, 2016 in Nature Communications, offer unprecedented insight into function and could lead to novel pain treatments for , chronic itch and neurodegenerative diseases such as (ALS).

The spinal cord is crucial for sensing and responding to the world. Sometimes it even works independently from the brain, such as when your hand recoils from a hot stove before the sensation has fully registered. But it is unknown exactly how the cells within the spinal cord encode these and other feelings from the skin or internal organs.

In the new study, senior author Axel Nimmerjahn, an assistant professor in Salk's Waitt Advanced Biophotonics Center, and his team improved upon the miniaturized microscopes they first described back in 2008. The researchers' new version—which features numerous hardware and software improvements—enabled them to visualize changes in cellular activity in awake, roaming mice.

"For a long time, researchers have dreamed of being able to record cellular activity patterns in the spinal cord of an awake animal. On top of that, we can now do this in a freely behaving animal, which is very exciting," says first author Kohei Sekiguchi, a Salk researcher and PhD student at the University of California, San Diego.

Most of the Salk team's previous work focused on deploying microscopes to observe the brains of living animals. The spinal cord, by contrast, presented a bigger challenge for several reasons. For example, unlike the brain, multiple, independently moving vertebrae surround the spinal cord. The spinal cord is also closer to pulsating organs (heart and lungs), which can hinder stable views of the cells within. However, by developing new microscopy and procedural and computational approaches, the team was able to overcome these challenges and capture the action of living cells in real time and during vigorous movements.

Salk researchers (from left, Kohei Sekiguchi and Axel Nimmerjahn) reveal the world's first imaging data on spinal cellular activity during behavior, enabled by their innovative miniaturized microscopes. Credit: Salk Institute

In the new work, the group found that distinct stimuli—such as light touch or pressure—activate different subsets of spinal sensory neurons. They also found that certain features, like the intensity or duration of a given stimulus, are reflected in the activity of the neurons.

To the team's surprise, astrocytes, traditionally thought to be passive support cells, also respond to stimuli (albeit differently than the neurons). Though the astrocytes cannot send like neurons can, they generated their own chemical signals in a coordinated way during intense stimuli.

Nimmerjahn is excited about this result because his group has a longstanding interest in understanding astrocytes and their roles in nervous system function and disease. These cells are increasingly appreciated as important players in how the nervous system develops and operates and could serve as promising new drug targets, he says.

"Not only can we now study normal sensory processing, but we can also look at disease contexts like spinal cord injury and how treatments actually affect the cells," says Nimmerjahn.

The team is now working to simultaneously record touch or pain-related activity in the brain and using additional iterations of the miniaturized microscopes, which allow them to monitor and manipulate multiple cell types at even higher resolutions.

Explore further: New hope for spinal cord injuries

Related Stories

New hope for spinal cord injuries

April 11, 2016
esearchers from Hokkaido University in Japan together with an international team of scientists implanted specialized embryonic stem cells into the severed spinal cords of rats. The stem cells, called neural progenitor cells, ...

To scratch an itch is a hairy problem

October 29, 2015
An insect lands on your arm, moving the tiny hairs on your skin just enough to make you want to scratch. Salk Institute researchers have uncovered evidence of a dedicated neural pathway that transmits the itchy feeling triggered ...

Researchers find possible treatment for suppressed immunity from spine injuries

April 18, 2016
Scientists report in Nature Neuroscience they have identified an underlying cause of dangerous immune suppression in people with high level spinal cord injuries and they propose a possible treatment.

Protective effect of genetically modified cord blood on spinal cord injury in rats

April 11, 2016
Transplantation of genetically modified cells carrying a transgene has a greater stimulating effect on the central nervous system after traumatic injury. During spinal cord injury, the extensive area adjacent to the epicenter ...

Scientists see motor neurons 'walking' in real time

September 2, 2015
When you're taking a walk around the block, your body is mostly on autopilot—you don't have to consciously think about alternating which leg you step with or which muscles it takes to lift a foot and put it back down. That's ...

Biologists discover new strategy to treat central nervous system injury

April 11, 2016
Neurobiologists at UC San Diego have discovered how signals that orchestrate the construction of the nervous system also influence recovery after traumatic injury. They also found that manipulating these signals can enhance ...

Recommended for you

New compound shown to be as effective as FDA-approved drugs against life-threatening infections

June 15, 2018
Purdue University researchers have identified  a new compound that in preliminary testing has shown itself to be as effective as antibiotics approved by the Food and Drug Administration to treat life-threatening infections ...

Foods combining fats and carbohydrates more rewarding than foods with just fats or carbs

June 14, 2018
Researchers show that the reward center of the brain values foods high in both fat and carbohydrates—i.e., many processed foods—more than foods containing only fat or only carbs. A study of 206 adults, to appear June ...

3-D imaging and computer modeling capture breast duct development

June 14, 2018
Working with hundreds of time-lapse videos of mouse tissue, a team of biologists joined up with civil engineers to create what is believed to be the first 3-D computer model to show precisely how the tiny tubes that funnel ...

Beating cancer at its own game with a Trojan horse telomerase

June 13, 2018
Telomerase is a reverse transcriptase that uses an RNA template to synthesize telomeres. These repeat sequences bind special proteins that fold the ends of chromosomes back onto themselves to create a stable cap. When this ...

Turning the tables on the cholera pathogen

June 13, 2018
Recent cholera outbreaks in regions that are ravaged by war, struck by natural disasters, or simply lack basic sanitation, such as Yemen or Haiti, are making the development of new and more effective interventions a near-term ...

Troves from a search for new biomarkers: blood-borne RNA

June 12, 2018
It's the critical first step in treating everything from strokes to cancer: a timely and accurate diagnosis. Today, doctors often rely on biomarkers, such as cardiac troponin, the protein that appears in the blood after a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.