An algorithm is sped up to predict harmful effects from specific gene mutations

May 6, 2016

In 2001, researchers developed a formula, or algorithm, that predicts whether a specific change in a gene sequence can result in harmful effects. While useful, the algorithm was slow; the computations underpinning these predictions used multiple central processing units (CPUs) and a significant amount of time. Now A*STAR researchers have adapted the algorithm to work on a graphical processing unit, a specialized electronic circuit that can process huge amounts of data in parallel.

The faster computational time has allowed the team to expand their "database of predictions" from just the human genome to include more than 200 additional organisms.

Similarities exist between the same of different organisms. Even so, individual organisms have differences in parts of their genomes when compared to other organisms of the same species. Some of these differences affect how proteins function and may lead to disease. By comparing genetic sequences, researchers are able to pinpoint disease-causing gene mutations. But this requires sifting through huge amounts of data.

The SIFT (Sorting Intolerant From Tolerant) predicts which changes in a gene — known as variants — could affect the function of the protein that gene encodes. Using SIFT, A*STAR researchers computed potential changes that can occur to gene sequences in humans to compile a database of predictions. Researchers provide SIFT with the gene variants they are investigating as a possible source of disease. SIFT then looks up the variants in its database of predictions. Variants that are predicted deleterious by SIFT are highlighted and may be considered worthy of further investigation.

Compiling SIFT's database for the involved performing computations on multiple CPUs, which took about four minutes to analyse a single gene sequence.

"I had wanted to make SIFT databases for a lot more organisms, but making the human database took significant time," says systems biologist Pauline Ng from the Genome Institute of Singapore.

SIFT was adapted for use with a to make faster predictions. This allowed the team to expand the scope of the algorithm's predictions to cover more than 200 other organisms. SIFT 4G, the updated algorithm, takes only 2.6 seconds to analyse a compared to SIFT's four minutes.

The updated and algorithm will not only facilitate the identification of disease-causing gene mutations but will help researchers understand the genetic variations that make some animal breeds or plants strains more robust or prone to disease.

Explore further: Yeast against the machine: Bakers' yeast could improve diagnosis

More information: Robert Vaser et al. SIFT missense predictions for genomes, Nature Protocols (2015). DOI: 10.1038/nprot.2015.123

Related Stories

Yeast against the machine: Bakers' yeast could improve diagnosis

April 6, 2016
It's easier than ever to sequence our DNA, but doctors still can't exactly tell from our genomes which diseases might befall us. Professor Fritz Roth is setting out to change this by going to basics—to our billion-year-old ...

Genetic risk factors of disparate diseases share similar biological underpinnings

April 28, 2016
The discovery of shared biological properties among independent variants of DNA sequences offers the opportunity to broaden understanding of the biological basis of disease and identify new therapeutic targets, according ...

Recommended for you

Gene variant activity is surprisingly variable between tissues

August 21, 2017
Every gene in almost every cell of the body is present in two variants called alleles—one from the mother, the other one from the father. In most cases, both alleles are active and transcribed by the cells into RNA. However, ...

Genome analysis with near-complete privacy possible, say researchers

August 17, 2017
It is now possible to scour complete human genomes for the presence of disease-associated genes without revealing any genetic information not directly associated with the inquiry, say Stanford University researchers.

Science Says: DNA test results may not change health habits

August 17, 2017
If you learned your DNA made you more susceptible to getting a disease, wouldn't you work to stay healthy?

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Phenotype varies for presumed pathogenic variants in KCNB1

August 16, 2017
(HealthDay)—De novo KCNB1 missense and loss-of-function variants are associated with neurodevelopmental disorders, with or without seizures, according to a study published online Aug. 14 in JAMA Neurology.

Active non-coding DNA might help pinpoint genetic risk for psychiatric disorders

August 16, 2017
Northwestern Medicine scientists have demonstrated a new method of analyzing non-coding regions of DNA in neurons, which may help to pinpoint which genetic variants are most important to the development of schizophrenia and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.