Our brain uses statistics to calculate confidence, make decisions

May 4, 2016
An artistic interpretation of confidence in decision making. The decision hinges on confidence. The player has a feeling of self-confidence, but also his odds can be evaluated objectively based on the cards in his hand. The processes for computing both forms of confidence are more similar than previously thought. Credit: Julia Kuhl

The directions, which came via cell phone, were a little garbled, but as you understood them: "Turn left at the 3rd light and go straight; the restaurant will be on your right side." Ten minutes ago you made the turn. Still no restaurant in sight. How far will you be willing to drive in the same direction?

Research suggests that it depends on your initial level of after getting the directions. Did you hear them right? Did you turn at the 3rd light? Could you have driven past the restaurant? Is it possible the directions are incorrect?

Human brains are constantly processing data to make statistical assessments that translate into the feeling we call confidence, according to a study published today in Neuron. This feeling of confidence is central to decision making, and, despite ample evidence of human fallibility, the subjective feeling relies on objective calculations.

"The feeling ultimately relies on the same statistical computations a computer would make," says Professor Adam Kepecs, a neuroscientist at Cold Spring Harbor Laboratory (CSHL) and lead author of the new study. "People often focus on the situations where confidence is divorced from reality," he says. "But if confidence were always error-prone, what would be its function? If we didn't have the ability to optimally assess confidence, we'd routinely find ourselves driving around for hours in this scenario."

Calculating confidence for a statistician involves looking at a set of data—perhaps a sampling of marbles pulled from a bag—and making a conclusion about the entire bag based on that sample. "The feeling of confidence and the objective calculation are related intuitively," says Kepecs. "But how much so?"

In experiments with human subjects, Kepecs and colleagues therefore tried to control for different factors that can vary from person to person. The aim was to establish what evidence contributed to each decision. In this way they could compare people's reports of confidence with the optimal statistical answer. "If we can quantify the evidence that informs a person's decision, then we can ask how well a statistical algorithm performs on the same evidence," says Kepecs.

He and graduate student Joshua Sanders created video games to compare human and computer performance. They had human volunteers listen to streams of clicking sounds and determine which clicks were faster. Participants rated confidence in each choice on a scale of one (a random guess) to five (high confidence). What Kepecs and his colleagues found was that human responses were similar to statistical calculations. The brain produces feelings of confidence that inform decisions the same way statistics pulls patterns out of noisy data.

Kepecs's model for human confidence stood up to a follow-on experiment in which participants answered questions comparing the populations of various countries. Unlike the perceptual test, this one had the added complexity of each participant's individual knowledge base.

The development of a model for confidence is a first step toward Kepecs' ultimate goal to find out where this inner statistician sits in the brain and how it does its data processing. It is Kepecs' thesis that statistics - generated by the objective processing of sensory and other data - is the ultimate language of the brain.

At the same time, Kepecs says it's likely that the statistical computation his research reveals probably provides only an initial estimate for human decision-makers. "Human confidence reports are not equivalent to this computation," he says. "In the experiments we conducted, they mirror this computation, and we suspect that in more complex situations they will be the point of departure for a confidence report."

Kepecs plans to use his model of confidence as a foothold for finding the seat of confidence in the brain and understanding its neural circuitry. "Having a theory about confidence is a required first step to figure out how the brain actually does it, how nerve cells perform this process," he says.

The work may also have wider implications. The fields of statistics and, in particular, machine learning, may have something to learn from this inner statistician. "Humans are still better than computers at solving really difficult problems," says Kepecs.

Explore further: Scientists uncover the neural basis of confidence in the rat brain

More information: "Signatures of a statistical computation in the human sense of confidence" appears online May 5, 2016 in Neuron. The authors are: Joshua I. Sanders, Balazs Hangya and Adam Kepecs. The paper can be viewed at: http://www.cell.com/neuron/fulltext/S0896-6273(16)30016-2 , DOI: 10.1016/j.neuron.2016.03.025

Related Stories

Scientists uncover the neural basis of confidence in the rat brain

September 18, 2014
Life is a series of decisions, ranging from the mundane to the monumental. And each decision is a gamble, carrying with it the chance to second-guess. Did I make the right turn at that light? Did I choose the right college? ...

Learning in the absence of external feedback

April 6, 2016
Rewards act as external factors that influence and reinforce learning processes. Researchers from Charité - Universitätsmedizin Berlin have now been able to show that the brain can produce its own learning signals in cases ...

Certainty in our choices often a matter of time, study finds

December 17, 2014
When faced with making choices, but lack sufficient evidence to guarantee success, our brain uses elapsed time as a proxy for task difficulty to calculate how confident we should be, a team of neuroscientists has found. Their ...

Surprised? Cholinergic neurons send broadcasts enabling us to learn from the unexpected

August 27, 2015
When a large combat unit, widely dispersed in dense jungle, goes to battle, no single soldier knows precisely how his actions are affecting the unit's success or failure. But in modern armies, every soldier is connected via ...

Confidence not accurate measure of prescribing competence

February 10, 2015
(HealthDay)—For medical students, self-reported confidence in prescribing only weakly correlates with actual competence, according to a study published online Feb. 4 in The Journal of Clinical Pharmacology.

Brain study shows why some people are more in tune with what they want

December 9, 2012
Wellcome Trust researchers have discovered how the brain assesses confidence in its decisions. The findings explain why some people have better insight into their choices than others.

Recommended for you

Faulty cell signaling derails cerebral cortex development, could it lead to autism?

September 20, 2017
As the embryonic brain develops, an incredibly complex cascade of cellular events occur, starting with progenitors - the originating cells that generate neurons and spur proper cortex development. If this cascade malfunctions ...

Research redefines proteins' role in the development of spinal sensory cells

September 19, 2017
A recent study led by Samantha Butler at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA has overturned a common belief about how a certain class of proteins in the spinal cord regulate ...

The brain at work: Spotting half-hidden objects

September 19, 2017
How does a driver's brain realize that a stop sign is behind a bush when only a red edge is showing? Or how can a monkey suspect that the yellow sliver in the leaves is a round piece of fruit?

Team discovers how to train damaging inflammatory cells to promote repair after stroke

September 19, 2017
White blood cells called neutrophils are like soldiers in your body that form in the bone marrow and at the first sign of microbial attack, head for the site of injury just as fast as they can to neutralize invading bacteria ...

Epileptic seizures show long-distance effects

September 19, 2017
The area in which an epileptic seizure starts in the brain, may be small but it reaches other parts of the brain at distances of over ten centimeters. That distant activity, in turn, influences the epileptic core, according ...

Study uncovers markers for severe form of multiple sclerosis

September 18, 2017
Scientists have uncovered two closely related cytokines—molecules involved in cell communication and movement—that may explain why some people develop progressive multiple sclerosis (MS), the most severe form of the disease. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.