Common antimicrobial agent triclosan rapidly disrupts gut bacteria

May 18, 2016, Oregon State University
Credit: Lynn Greyling/public domain

A new study suggests that triclosan, an antimicrobial and antifungal agent found in many consumer products ranging from hand soaps to toys and even toothpaste, can rapidly disrupt bacterial communities found in the gut.

The research was published today in PLOS ONE by scientists from Oregon State University. It was based on findings made with zebrafish, which researchers believe are an important animal model to help determine possible human biological and health impacts of this .

Triclosan was first used as a hospital scrub in the 1970s and now is one of the most common antimicrobial agents in the world, found in shampoos, deodorants, toothpastes, mouth washes, kitchen utensils, cutting boards, toys, bedding, socks and trash bags. It continues to be used in medical settings, and can be easily absorbed through the skin.

"There has been a legacy of concern about exposure to microbial pathogens, which has led to increased use of these ," said Thomas Sharpton, an assistant professor of microbiology and statistics in the OSU Colleges of Science and Agricultural Sciences, and corresponding author on the new study.

"However, there's now a growing awareness of the importance of the bacteria in our gut microbiome for human health, and the overuse of antibiotics that can lead to the rise of 'superbugs.' There are consequences to constantly trying to kill the bacteria in the world around us, aspects we're just beginning to understand."

In the new study, researchers found that triclosan exposure caused rapid changes in both the diversity and composition of the microbiome in the laboratory animals. It's not clear what the implication may be for animal or human health, but scientists believe that compromising of the bacteria in the intestinal tract may contribute to the development or severity of disease.

Some bacteria were more susceptible to the impact of than others, such as the family Enterobacteriaceae; and others were more resilient, such as the genus Pseudomonas.

"Clearly there may be situations where antibacterial agents are needed," said Christopher Gaulke, lead author on the study and a postdoctoral microbiology researcher in the OSU College of Science.

"However, scientists now have evidence that may have metabolic, cardiovascular, autoimmune and neurological impacts, and concerns about overuse of these agents are valid. Cumulative impacts are also possible. We need to do significantly more evaluation of their effects, some of which might be dramatic and long lasting."

The gut-associated microbiome performs vital functions for , prevents colonization with pathogens, stimulates the development of the immune system, and produces micronutrients needed by the host. Dysfunction of this microbiome has been associated with human disease, including diabetes, heart disease, arthritis and malnutrition, the scientists pointed out in their study.

Humans are routinely exposed to an array of chemicals, metals, preservatives, microbes and nutrients, some of which may be beneficial, some innocuous, and others harmful, the researchers said. Part of the strength of the present study is developing improved ways, through rapid screening of zebrafish, to more easily determine which compounds may be acceptable and which are toxic, scientists say.

Triclosan has been a concern in part because it is so widely used, and it's also readily absorbed through the skin and gastrointestinal tracts, showing up in urine, feces and breast milk. It also has been associated with endocrine disruption in fish and rats, may act as a liver tumor promoter, and can alter inflammatory responses.

This study showed it was quickly associated with shifts in the microbial community structure and can alter the abundance of specific taxa.

Collaborators on this research included scientists from the OSU Environmental Health Sciences Center and OSU College of Agricultural Sciences.

Explore further: Antimicrobial in common toothpaste doesn't impact gut, oral microbiome

Related Stories

Antimicrobial in common toothpaste doesn't impact gut, oral microbiome

May 18, 2016
Personal hygiene products such as soaps and toothpastes that contain the antibiotic triclosan do not have a major influence on microbial communities or endocrine function, according to a small, randomized trial. The study ...

Antimicrobial from soaps promotes bacteria buildup in human noses

April 8, 2014
An antimicrobial agent found in common household soaps, shampoos and toothpastes may be finding its way inside human noses where it promotes the colonization of Staphylococcus aureus bacteria and could predispose some people ...

Narrow spectrum antibiotic kills pathogens without killing good bacteria

May 9, 2016
The problem with broad spectrum antibiotics is that they kill good bacteria along with the bad. But a new antibiotic, Debio 1452, which is narrowly targeted at Staphilococcal pathogens, caused almost no harm to the gut microbiome ...

Bugs as drugs: Harnessing novel gut bacteria for human health

May 4, 2016
Scientists at the Wellcome Trust Sanger Institute have grown and catalogued more than 130 bacteria from the human intestine according to a study published in Nature today.

Chemical in antibacterial soap may disrupt mix of organisms in digestive tract

April 1, 2016
Use of a common nonprescription antimicrobial, triclocarban (TCC), during pregnancy and breast-feeding may alter the offspring's composition of intestinal bacteria and other micro-organisms, called the gut microbiota, a new ...

Recommended for you

Human 'chimeric' cells restore crucial protein in Duchenne muscular dystrophy

March 16, 2018
Cells made by fusing a normal human muscle cell with a muscle cell from a person with Duchenne muscular dystrophy —a rare but fatal form of muscular dystrophy—were able to significantly improve muscle function when implanted ...

Team develops 3-D tissue model of a developing human heart

March 16, 2018
The heart is the first organ to develop in the womb and the first cause of concern for many parents.

Genetic variant discovery to help asthma sufferers

March 16, 2018
Research from the University of Liverpool, published today in Lancet Respiratory Medicine, identifies a genetic variant that could improve the safety and effectiveness of corticosteroids, drugs that are used to treat a range ...

Researchers say use of artificial intelligence in medicine raises ethical questions

March 15, 2018
In a perspective piece, Stanford researchers discuss the ethical implications of using machine-learning tools in making health care decisions for patients.

Study identifies potential drug for treatment of debilitating inherited neurological disease

March 15, 2018
St. Jude Children's Research Hospital scientists have demonstrated in mouse studies that the neurological disease spinal bulbar muscular atrophy (SBMA) can be successfully treated with drugs. The finding paves the way for ...

Clearing clumps of protein in aging neural stem cells boosts their activity

March 15, 2018
Young, resting neural stem cells in the brains of mice store large clumps of proteins in specialized cellular trash compartments known as lysosomes, researchers at the Stanford University School of Medicine have found.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.