Using exercise to reduce glutamate build-up in the brain

May 17, 2016, Canadian Science Publishing (NRC Research Press)
brain

In a new study published today in Applied Physiology, Nutrition, and Metabolism, scientists from the University of Guelph have found that exercise has the potential to decrease toxic build-up in the brain, reducing the severity of brain disorders such as Huntington's disease.

Glutamate, an amino acid that is one of the twenty amino acids used to construct proteins, is used by the brain to transmit signals, but too much glutamate blocks future signals and can lead to toxicity in the brain. Since the majority of the brain relies on glutamate as the main neurotransmitter for communication between neural cells, it is essential that glutamate is reabsorbed and disposed of to prevent blockage. While glutamate reuptake is a normal process for healthy brains, several diseases such as Huntington's disease, ALS, and epilepsy result in either failed reuptake of glutamate or high levels of glutamate in the brain. This can lead to unwanted and in some cases excessive stimulation of neighbouring cells which can worsen the disease.

The findings of this study show that has the potential to increase the use of glutamate in the brain and may help reduce the toxicity caused by glutamate build-up in these diseases. "As we all know, exercise is healthy for the rest of the body and our study suggests that exercise may present an excellent option for reducing the severity of " says Dr. Eric Herbst, lead author of the study. "Taking into account that there are no cures for where glutamate is implicated, this study offers another example of the benefits of exercise for our brains" continued Dr. Herbst. "In short, these findings offer another reason to exercise with the aim of either preventing or slowing the neurodegeneration caused by these disorders".

The findings of this study are of particular importance to other researchers exploring different approaches to treating brain disorders. The main approaches to treating neurodegenerative diseases are hindered by the need to produce drugs that both have the intended effect for treating the disease and are also able to pass the . Through the use of exercise, the brain can direct glutamate to be used as an energy source to dispose of excess amounts of the neurotransmitter, without relying on the difficult development of pharmaceuticals. Identifying and targeting the mechanisms that increase glutamate metabolism in the brain may also provide the medical field with additional ways of treating problems within the . How the findings of this study translates to people affected by neurodegenerative diseases still needs exploring and is an important next step.

The paper, "Exercise increases mitochondrial oxidation in the mouse cerebral cortex" by Eric Herbst and Graham Holloway was published today in Applied Physiology, Nutrition, and Metabolism.

Explore further: Glutamate, an essential food for the brain

More information: Applied Physiology, Nutrition, and Metabolism, www.nrcresearchpress.com/doi/a … .1139/apnm-2016-0033

Related Stories

Glutamate, an essential food for the brain

October 1, 2015
Glutamate is an amino acid with very different functions: in the pancreas, it modulates the activity of the pancreatic ß-cells responsible for insulin production, whereas in the brain it is the main excitatory neurotransmitter. ...

How a waste product of exercise protects neurons from trauma damage

February 19, 2016
Researchers led by EPFL have found how lactate, a waste product of glucose metabolism can protect neurons from damage following acute trauma such as stroke or spinal cord injury.

Vigorous exercise boosts critical neurotransmitters, may help restore mental health

February 25, 2016
People who exercise have better mental fitness, and a new imaging study from UC Davis Health System shows why. Intense exercise increases levels of two common neurotransmitters—glutamate and gamma-aminobutyric acid, or ...

An experimental Alzheimer's drug reverses genetic changes thought to spur the disease

May 3, 2016
Aging takes its toll on the brain, and the cells of the hippocampus—a brain region with circuitry crucial to learning and memory—are particularly vulnerable to changes that can lead to Alzheimer's disease or cognitive ...

The significance of non-motor microtubule-associated protein in maintaining synaptic plasticity thorough a novel mechani

February 5, 2016
NMDA glutamate receptors, which function as receptors that bond with glutamates, are known to be deeply involved in animal memory and learning. In order for memories to be created inside the brain, these NMDA glutamate receptors ...

High levels of glutamate in brain may kick-start schizophrenia

April 18, 2013
An excess of the brain neurotransmitter glutamate may cause a transition to psychosis in people who are at risk for schizophrenia, reports a study from investigators at Columbia University Medical Center (CUMC) published ...

Recommended for you

A 15-minute scan could help diagnose brain damage in newborns

November 14, 2018
A 15-minute scan could help diagnose brain damage in babies up to two years earlier than current methods.

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

New brain imaging research shows that when we expect something to hurt it does, even if the stimulus isn't so painful

November 14, 2018
Expect a shot to hurt and it probably will, even if the needle poke isn't really so painful. Brace for a second shot and you'll likely flinch again, even though—second time around—you should know better.

New clues to the origin and progression of multiple sclerosis

November 13, 2018
Mapping of a certain group of cells, known as oligodendrocytes, in the central nervous system of a mouse model of multiple sclerosis (MS), shows that they might have a significant role in the development of the disease. The ...

Mutations, CRISPR, and the biology behind movement disorders

November 12, 2018
Scientists at the RIKEN Center for Brain Science (CBS) in Japan have discovered how mutations related to a group of movement disorders produce their effects. Published in Proceedings of the National Academy of Sciences, the ...

In live brain function, researchers are finally seeing red

November 12, 2018
For years, green has been the most reliable hue for live brain imaging, but after using a new high-throughput screening method, researchers at the John B. Pierce Laboratory and the Yale School of Medicine, together with collaborators ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.