Origin of synaptic pruning process linked to learning, autism and schizophrenia identified

May 2, 2016

Research led by SUNY Downstate Medical Center has identified a brain receptor that appears to initiate adolescent synaptic pruning, a process believed necessary for learning, but one that appears to go awry in both autism and schizophrenia.

Sheryl Smith, PhD, professor of physiology and pharmacology at SUNY Downstate, explained, "Memories are formed at structures in the brain known as that communicate with other brain cells through synapses. The number of brain connections decreases by half after puberty, a finding shown in many brain areas and for many species, including humans and rodents."

This process is referred to as adolescent "synaptic pruning" and is thought to be important for normal learning in adulthood. Synaptic pruning is believed to remove unnecessary synaptic connections to make room for relevant new memories, but because it is disrupted in diseases such as autism and schizophrenia, there has recently been widespread interest in the subject.

Dr. Smith continued, "Our report is the first to identify the process which initiates synaptic pruning at puberty. Previous studies have shown that scavenging by the immune system cleans up the debris from these pruned connections, likely the final step in the pruning process.

"Working with a mouse model we have shown that, at puberty, there is an increase in inhibitory GABA receptors, which are targets for brain chemicals that quiet down nerve cells. We now report that these GABA receptors trigger synaptic pruning at puberty in the mouse hippocampus, a brain area involved in learning and memory." The report, published by eLife, "Synaptic pruning in the female hippocampus is triggered at puberty by extrasynaptic GABAA receptors on dendritic spines," (Afroz, S., Parato, J., Shen, H. and Smith, S.S.), is online at: http://elifesciences.org/content/5/e15106v1 .

Dr. Smith adds that by reducing brain activity, these GABA receptors also reduce levels of a protein in the dendritic spine, kalirin-7, which stabilizes the scaffolding in the spine to maintain its structure. Mice that do not have these receptors maintain the same high level of brain connections throughout adolescence.

Dr. Smith points out that the mice with too many brain connections, which do not undergo synaptic pruning, are able to learn spatial locations, but are unable to re-learn new locations after the initial learning, suggesting that too many may limit learning potential.

These findings may suggest new treatments targeting GABA receptors for "normalizing" synaptic pruning in diseases such as autism and schizophrenia, where is abnormal. Research has suggested that children with autism may have an over-abundance of synapses in some parts of the brain. Other research suggests that prefrontal areas in persons with schizophrenia have fewer neural connections than the brains of those who do not have the condition.

Explore further: Researchers provide definitive proof for receptor's role in synapse development

More information: Sonia Afroz et al, Synaptic pruning in the female hippocampus is triggered at puberty by extrasynaptic GABAreceptors on dendritic spines, eLife (2016). DOI: 10.7554/eLife.15106

Related Stories

Researchers uncover steps in synapse building, pruning

November 16, 2011

Like a gardener who stakes some plants and weeds out others, the brain is constantly building networks of synapses, while pruning out redundant or unneeded synapses. Researchers at The Jackson Laboratory led by Assistant ...

Children with autism have extra synapses in brain

August 21, 2014

Children and adolescents with autism have a surplus of synapses in the brain, and this excess is due to a slowdown in a normal brain "pruning" process during development, according to a study by neuroscientists at Columbia ...

Recommended for you

Forgetting can make you smarter

June 21, 2017

For most people having a good memory means being able to remember more information clearly for long periods of time. For neuroscientists too, the inability to remember was long believed to represent a failure of the brain's ...

Serotonin improves sociability in mouse model of autism

June 21, 2017

Scientists at the RIKEN Brain Science Institute (BSI) in Japan have linked early serotonin deficiency to several symptoms that occur in autism spectrum disorder (ASD). Published in Science Advances, the study examined serotonin ...

Three ways neuroscience can advance the concussion debate

June 21, 2017

While concussion awareness has improved over the past decade, understanding the nuances of these sports injuries, their severity, symptoms, and treatment, is still a work in progress. In the June 21 issue of Neuron, UCLA ...

The brain mechanism behind multitasking

June 21, 2017

Although "multitasking" is a popular buzzword, research shows that only 2% of the population actually multitasks efficiently. Most of us just shift back and forth between different tasks, a process that requires our brains ...

Untangling the complex puzzle of optic nerve regeneration

June 21, 2017

The optic nerve is vital for vision—damage to this critical structure can lead to severe and irreversible loss of vision. Fengfeng Bei, PhD, a principal investigator in the Department of Neurosurgery at Brigham and Women's ...

Researchers discover brain inflammation in people with OCD

June 21, 2017

A new brain imaging study by the Centre for Addiction and Mental Health (CAMH) shows for the first time that brain inflammation is significantly elevated - more than 30 per cent higher - in people with obsessive-compulsive ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.