Unexpected findings reveal insight into how cancer spreads in the body

June 23, 2016
Credit: Barts Cancer Institute, QMUL

Cancer cells appear to depend on an unusual survival mechanism to spread around the body, according to an early study led by Queen Mary University of London (QMUL). The discovery could help with future development of novel treatments to prevent metastasis and secondary tumours.

The spread of cancer around the body - metastasis - is one of the biggest challenges in cancer treatment. It is often not the original tumour that kills, but secondary growths. These happen when are able to break away from the primary site, travel around the body and 'seed' new tumours.

A key question in cancer research has been how cancer cells are able to survive once they break away from a tumour to spread around the body. Cells are relatively protected when they are attached to other cancer cells and their surroundings, but become more vulnerable when they detach and 'float', and normally undergo cell death.

Lead researcher Dr Stéphanie Kermorgant from QMUL's Barts Cancer Institute said: "Metastasis is currently incurable and remains one of the key targets of cancer research. Our research advances the knowledge of how two key molecules communicate and work together to help cancer cells survive during metastasis. We're hoping that this might lead to the discovery of new drugs to block the spread of cancer within the body."

Credit: Barts Cancer Institute, QMUL

The study, published in Nature Communications, examined the changes that occur in cancer cells as they break away from tumours in cell cultures, zebrafish and mice. The researchers revealed a previously unknown survival mechanism in cancer cells and found that molecules known as 'integrins' could be key.

Integrins are proteins on the cell surface that attach to and interact with the cell's surroundings. 'Outside-in' and 'inside-out' signalling by integrins is known to help the cancer cells attach themselves to their surroundings. But the study suggests that when the cancer cells are floating, as they do during metastasis, the integrins switch from their adhesion role to take on an entirely new form of communication which has never been seen before - 'inside-in' signalling, in which integrins signal within the cell.

The researchers discovered that an integrin called beta-1 (β1) pairs up with another protein called c-Met and they move inside the cell together. The two proteins then travel to an unexpected location within the cell which is normally used to degrade and recycle cell material. Instead the location is used for a new role of cell communication and the two proteins send a message to the rest of the cell to resist against death while floating during metastasis.

Using both breast and lung cells, the team found that metastases were less likely to form when β1 and c-Met were blocked from entering the cell together or were prevented from moving to the special location within the cell.

Credit: Barts Cancer Institute, QMUL

Integrins are already major targets for cancer treatment with drugs either being tested or in use in the clinic. Most integrin inhibitor drugs target their adhesive function and block them on the surface of the cancer cell. The researchers say that the limited success of these drugs could be partly explained by this newly discovered role of integrins within the cancer cell.

A new strategy could be to prevent the integrin from going inside the cell in the first place. The researchers hope that these insights could lead to the design of better therapies against metastasis and more effective treatment combinations that could prevent and slow both tumour growth and spread.

The research was funded by the UK Medical Research Council, Breast Cancer Now, Rosetrees Trust, British Lung Foundation, Cancer Research UK and Barts Charity.

The team carried out part of their animal research work on zebrafish embryos in order to implement the principle of 3Rs (refine, reduce, replace) on their research on mice. Zebrafish provide a similar tumour microenvironment to humans, meaning fewer tests need to be carried out in mice and any future experiments in mice will have been optimised to have minimal toxicity. They are aiming to reduce the number of mice used by at least 90 per cent and ultimately use zebrafish to completely replace the use of mice.

Explore further: Researchers discover protein that may control the spread of cancer

More information: Barrow-McGee, R. et al. Beta 1-integrin-c-Met cooperation reveals an inside-in survival signalling on autophagy-related endomembranes, Nature Communications, DOI: 10.1038/ncomms11942

Related Stories

Researchers discover protein that may control the spread of cancer

February 26, 2013
Researchers at the University of Hawai'i Cancer Center have uncovered a novel mechanism that may lead to more selective ways to stop cancer cells from spreading. Associate Professor Joe W. Ramos PhD, a cancer biologist at ...

Researchers discover new information on the spread of cancer

October 8, 2015
A new study from the University of Turku, Finland, shows that intracellular receptor signalling sustains cancer cells that have detached from the surrounding tissue. When the signalling is prevented, the cells cannot spread ...

Aggressive cancer cells halted

June 10, 2016
Zebrafish-human communication shows that cancer cells lacking a signaling protein are less able to develop aggressive metastatic properties. This discovery has been made by Claudia Tulotta. PhD defence 14 June.

Researchers discover 'bad' cholesterol contributes to cancer spread in the body

May 7, 2014
(Medical Xpress)—In a world-first, University of Sydney researchers have discovered one of the main reasons behind why cancer spreads throughout the body - the help of 'bad' cholesterol.

Vitamin A may help improve pancreatic cancer chemotherapy

May 24, 2016
The addition of high doses of a form of vitamin A could help make chemotherapy more successful in treating pancreatic cancer, according to an early study by Queen Mary University of London (QMUL). The promising initial results ...

Scientists discover new mechanism which causes the spread of breast cancer

May 21, 2014
(Medical Xpress)—Scientists at Queen Mary University of London (QMUL) have uncovered a new mechanism which makes breast cancer cells move and invade the body, a discovery which could shed light on how to treat particularly ...

Recommended for you

Cancer-death button gets jammed by gut bacterium

July 27, 2017
Researchers at Michigan Medicine and in China showed that a type of bacterium is associated with the recurrence of colorectal cancer and poor outcomes. They found that Fusobacterium nucleatum in the gut can stop chemotherapy ...

Researchers release first draft of a genome-wide cancer 'dependency map'

July 27, 2017
In one of the largest efforts to build a comprehensive catalog of genetic vulnerabilities in cancer, researchers from the Broad Institute of MIT and Harvard and Dana-Farber Cancer Institute have identified more than 760 genes ...

Long-sought mechanism of metastasis is discovered in pancreatic cancer

July 27, 2017
Cells, just like people, have memories. They retain molecular markers that at the beginning of their existence helped guide their development. Cells that become cancerous may be making use of these early memories to power ...

Manmade peptides reduce breast cancer's spread

July 27, 2017
Manmade peptides that directly disrupt the inner workings of a gene known to support cancer's spread significantly reduce metastasis in a mouse model of breast cancer, scientists say.

Blocking the back-door that cancer cells use to escape death by radiotherapy

July 27, 2017
A natural healing mechanism of the body may be reducing the efficiency of radiotherapy in breast cancer patients, according to a new study.

Glowing tumor technology helps surgeons remove hidden cancer cells

July 27, 2017
Surgeons were able to identify and remove a greater number of cancerous nodules from lung cancer patients when combining intraoperative molecular imaging (IMI) - through the use of a contrast agent that makes tumor cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.