Researchers describe copper-induced misfolding of prion proteins

July 1, 2016
Iowa State University's Chi-Fu Yen and Sanjeevi Sivasankar, left to right, developed single-molecule techniques to study copper-induced misfolding of prion proteins. Credit: Christopher Gannon/Iowa State University

Iowa State University researchers have described with single-molecule precision how copper ions cause prion proteins to misfold and seed the misfolding and clumping of nearby prion proteins.

The researchers also found the copper-induced misfolding and clumping is associated with inflammation and damage to nerve cells in brain tissue from a mouse model.

Prions are abnormal, pathogenic agents that are transmissible and induce abnormal folding of a specific type of protein called prion proteins, according to the Centers for Disease Control and Prevention. Prion proteins are mostly found in the brain. The abnormal folding of prion proteins leads to brain damage and symptoms of neurodegenerative disease. A similar cycle of neuronal protein misfolding and clumping is observed in other neurodegenerative disorders, including Parkinson's and Alzheimer's diseases.

"Our study establishes a direct link, at the molecular level, between copper exposure and neurotoxicity," the researchers wrote in a summary of the paper.

The findings were published today in the journal Science Advances. The corresponding author is Sanjeevi Sivasankar, an Iowa State University associate professor of physics and astronomy; the first author is Chi-Fu Yen, an Iowa State doctoral student in electrical and computer engineering. Co-authors are Anumantha Kanthasamy, an Iowa State Clarence Hartley Covault Distinguished Professor in Veterinary Medicine, chair of biomedical sciences and director of the Iowa Center for Advanced Neurotoxicology; and Dilshan Harischandra, an Iowa State doctoral student in biomedical sciences.

Grants from the National Institute of Environmental Health Sciences at the National Institutes of Health supported the project, including one from the Virtual Consortium for Transdisciplinary Environmental Research.

Although this study determined that copper-induced misfolding and clumping of prion proteins is associated with the degeneration of nerve tissues, Sivasankar cautioned that the study does not directly address the infectivity of prion diseases.

"There are different strains of misfolded prion proteins and not all of them are pathogenic," Sivasankar said. "Although we do not show that the strains generated in our experiments are infectious, we do prove that copper ions trigger misfolding of prion proteins which causes toxicity in nerve cells."

The Sivasankar and Kanthasamy research groups plan to perform additional studies to determine if the copper-induced misfolding causes disease.

Integrating approachesSivasankar also noted that a unique aspect of this project was the integration of biophysical and neurotoxicological research approaches. He said the combination has the potential to transform studies of the molecular basis for neurodegenerative diseases.

The biophysical approaches Sivasankar's team developed for this study include:

  • A fluorescence-based technique that identified misfolded prion proteins with single-molecule sensitivity and determined the role of metal ions in misfolding. The researchers used this technique to show that misfolding begins when bind to the unstructured tail of the prion protein.
  • A single-molecule atomic force microscopy assay that measured the efficiency of prion protein clumping. The researchers used this technique to show that misfolded prion proteins stick together nearly 900 times more efficiently than properly folded proteins.

The Kanthasamy and Sivasankar research groups worked together on a real-time, quaking-induced conversion assay to demonstrate that misfolded prion proteins serve as seeds that trigger the misfolding and clumping of nearby prion proteins.Kanthasamy's research group also used its expertise in neurotoxicology to show the copper-induced, misfolded prion proteins damage nerve cells in slices of brain tissue from mice.

Taken together, the results identify the biophysical conditions and mechanisms for copper-induced prion protein misfolding, clumping and neurotoxicity, the researchers wrote.

"This was a very comprehensive study," Sivasankar said. "We took it from single molecules all the way to tissues."

And, although the study doesn't address the infectious nature of prion diseases, Kanthasamy said it is still important: "This study has major implications to our understanding the role of metals in protein misfolding diseases including prion, Alzheimer's and Parkinson's diseases."

Explore further: Scientists identify most lethal known species of prion protein

More information: "Copper-induced structural conversion templates prion protein oligomerization and neurotoxicity," Science Advances, advances.sciencemag.org/content/2/7/e1600014

Related Stories

Scientists identify most lethal known species of prion protein

February 9, 2012
Scientists from the Florida campus of The Scripps Research Institute have identified a single prion protein that causes neuronal death similar to that seen in "mad cow" disease, but is at least 10 times more lethal than larger ...

Recommended for you

Researchers find way to convert bad body fat into good fat

September 19, 2017
There's good fat and bad fat in our bodies. The good fat helps burn calories, while the bad fat hoards calories, contributing to weight gain and obesity. Now, new research at Washington University School of Medicine in St. ...

New model may help science overcome the brain's fortress-like barrier

September 19, 2017
Scientists have helped provide a way to better understand how to enable drugs to enter the brain and how cancer cells make it past the blood brain barrier.

Cell-based therapy success could be boosted by new antioxidant

September 19, 2017
Cell therapies being developed to treat a range of conditions could be improved by a chemical compound that aids their survival, research suggests.

Study suggests epilepsy drug can be used to treat form of dwarfism

September 19, 2017
A drug used to treat conditions such as epilepsy has been shown in lab tests at The University of Manchester to significantly improve bone growth impaired by a form of dwarfism.

Research predicts how patients are likely to respond to DNA drugs

September 19, 2017
Research carried out by academics at Northumbria University, Newcastle could lead to improvements in treating patients with diseases caused by mutations in genes, such as cancer, cystic fibrosis and potentially up to 6,000 ...

Urine output to disease: Study sheds light on the importance of hormone quality control

September 18, 2017
The discovery of a puddle of mouse urine seems like a strange scientific "eureka" moment.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Jarrod1937
1 / 5 (6) Jul 01, 2016
Congratulations! This is pretty cool research. The more we can learn about protein folding and what induces misfolding we can start to treat and prevent quite a few disorders.
James_Mooney
1 / 5 (1) Jul 02, 2016
Makes me wonder about all those copper-infused sleeves for arms and legs you see for sale.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.