Ecologists identify potential new sources of Ebola and other filoviruses

July 14, 2016
Overlapping geographic ranges of bat species that have tested positive for filoviruses (top), and additional bat species predicted to carry filoviruses in the 90th percentile probability (bottom). Credit: From "Undiscovered bat hosts of filoviruses," by Han et al., originally published in PLOS Neglected Tropical Diseases.

An international team of ecologists has identified the bat species with the greatest potential to harbor filoviruses—a family that includes Ebola virus. Writing in PLOS Neglected Tropical Diseases, they suggest that areas where many of these species overlap, notably in Southeast Asia, should be targeted for disease surveillance and virus discovery efforts.

"Using machine learning methods developed for artificial intelligence, we were able to bring together data from ecology, biogeography and public health to identify bat species with a high probability of harboring Ebola and other filoviruses," said the paper's lead author Barbara Han of the Cary Institute of Ecosystem Studies. "Understanding which species carry these viruses, and where they are located, is essential to preventing future spillovers."

Filoviruses, which originate in animals and can be transmitted to humans, pose a serious threat to human health and to primate conservation. Ebola virus disease has a 50 percent human fatality rate, according to the World Health Organization, and among great apes like gorillas and chimpanzees that rate is even higher.

Identifying which animals serve as Ebola virus reservoirs—sources from which it can spread to humans and other susceptible animals—is critical for preventing future outbreaks. This has proven difficult in part because of the enormous geographic range of the virus across equatorial Africa and the sheer number of potential reservoir species within that range. There is mounting evidence, however, that certain bats are the likeliest culprits.

Han and colleagues from the University of Georgia and Massey University in New Zealand set out to develop a "trait profile" of filovirus-susceptible bats. Looking at more than 50 biological and ecological traits of the 21 bat species known to harbor filoviruses, they found several that distinguish them from other bats with 87 percent accuracy. These include earlier maturity, more frequent litters, and pups that are larger at birth. Their geographic ranges are also larger, and overlap with more mammal species, than those of other bats.

They used machine learning—complex computer programs that can analyze enormous amounts of data and find hidden patterns—to compare all 1,116 of the world's to the profile. This allowed them to determine which other species share those traits and are therefore potential filovirus hosts. Finally, they mapped the geographic ranges of all the species that fit the trait profile to pinpoint potential filovirus hotspots.

Their results contained some surprises.

Magnifications of hotspots of filovirus-positive bat species in sub-Saharan Africa (left), and hotspots in Southeast Asia show overlapping geographic ranges for predicted new filovirus carriers within the 90th percentile probability (right). Credit: From "Undiscovered bat hosts of filoviruses," by Han et al., originally published in PLOS Neglected Tropical Diseases.

While many of the species that most closely fit the profile are found in sub-Saharan Africa, the top 10 percent of likeliest hosts are much more widely distributed than the researchers expected. Species range across Southeast Asia and Central and South America. Several hotspots, where a number of potential reservoir overlap, are outside Africa, most notably in parts of Thailand, Burma, Malaysia, Vietnam and Northeastern India.

The findings provide information that could be used to target surveillance more efficiently by focusing on the likeliest filovirus carriers, many of which have never been tested.

Senior author John Drake, director of the new UGA Center for the Ecology of Infectious Diseases at the Odum School of Ecology, said that the results also highlight the importance of the multidisciplinary approach that is the center's hallmark.

"One thing the center aims to do is to perform synthetic (multi-disciplinary) research that reaches from basic science all the way out to wildlife management, public health and clinical practice," he said. "This work exemplifies how the center supports such endeavors by bringing together subject matter experts (in this case David Hayman of Massey University) with 'big picture' scientific visionaries like Barbara Han via the methodology of modern data science (UGA's Drake and J.P Schmidt)."

In addition, UGA undergraduate Laura Alexander, now a doctoral student at the University of California, Berkeley, reviewed the primary literature to compile a comprehensive picture of what was and wasn't known about the subject area, and UGA doctoral student Sarah Bowden—now a postdoctoral scientist at the Cary Institute—developed the maps.

The findings have raised questions for future research that will require a similar multidisciplinary approach.

"We suspect there may be other filoviruses waiting to be found," Drake said. "An outstanding question for future work is to investigate why there are so few filovirus spillover events reported for humans and wildlife in Southeast Asia compared to equatorial Africa."

Explore further: Progress towards protection from highly lethal Ebola, Marburg viruses

More information: "Undiscovered bat hosts of filoviruses," PLOS Neglected Tropical Diseases,

Related Stories

Progress towards protection from highly lethal Ebola, Marburg viruses

July 12, 2016
Ebola and Marburg filovirus disease outbreaks have typically occurred as isolated events, confined to central Africa. However, the recent Ebola epidemic spread to several African countries, and caused 11,000 deaths. That ...

Maps reveal where rats, monkeys, and other mammals may pass diseases on to humans

June 14, 2016
The majority of infectious diseases currently emerging as human epidemics originated in mammals. Yet we still know very little about the global patterns of mammal-to-human pathogen transmission. As a first step, researchers ...

Recent study suggests bats are reservoir for ebola virus in Bangladesh

January 16, 2013
EcoHealth Alliance, a nonprofit organization that focuses on local conservation and global health issues, released new research on Ebola virus in fruit bats in the peer reviewed journal, Emerging Infectious Diseases, a monthly ...

Recommended for you

Investigators may unlock mystery of how staph cells dodge the body's immune system

September 21, 2017
For years, medical investigators have tried and failed to develop vaccines for a type of staph bacteria associated with the deadly superbug MRSA. But a new study by Cedars-Sinai investigators shows how staph cells evade the ...

Superbug's spread to Vietnam threatens malaria control

September 21, 2017
A highly drug resistant malaria 'superbug' from western Cambodia is now present in southern Vietnam, leading to alarming failure rates for dihydroartemisinin (DHA)-piperaquine—Vietnam's national first-line malaria treatment, ...

Individualized diets for irritable bowel syndrome better than placebo

September 21, 2017
Patients with irritable bowel syndrome who follow individualized diets based on food sensitivity testing experience fewer symptoms, say Yale researchers. Their study is among the first to provide scientific evidence for this ...

A dose of 'wait-and-see' reduces unnecessary antibiotic use

September 21, 2017
Asking patients to take a 'wait-and-see' approach before having their antibiotic prescriptions filled significantly reduces unnecessary use, a University of Queensland study has shown.

Groundbreaking investigative effort identifies gonorrhea vaccine candidates

September 19, 2017
Researchers at Oregon State University have identified a pair of proteins that show promise as the basis for a gonorrhea vaccine.

Snail fever progression linked to nitric oxide production

September 14, 2017
Bilharzia, caused by a parasitic worm found in freshwater called Schistosoma, infects around 200 million people globally and its advance can lead to death, especially in children in developing countries.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.