Researchers ID cancer gene-drug combinations ripe for precision medicine

July 21, 2016
This image represents synthetic lethal wiring of a cancer cell, with previously known interactions in red and newly discovered interactions in gray. Credit: UC San Diego Health

In an effort to expand the number of cancer gene mutations that can be specifically targeted with personalized therapies, researchers at University of California San Diego School of Medicine and Moores Cancer Center looked for combinations of mutated genes and drugs that together kill cancer cells. Such combinations are expected to kill cancer cells, which have mutations, but not healthy cells, which do not. The study, published July 21 in Molecular Cell, uncovered 172 new combinations that could form the basis for future cancer therapies.

"Oncologists here at Moores Cancer Center at UC San Diego Health and elsewhere can often personalize cancer therapy based on an individual patient's unique cancer mutations," said senior author Trey Ideker, PhD, professor of genetics at UC San Diego School of Medicine. "But the vast majority of mutations are not actionable—that is, knowing a patient has a particular mutation doesn't mean there's an available therapy that targets it. The goal of this study was to expand the number of mutations we can pair with a precision therapy."

Most cancers have gene mutations that do one of two things—promote cell growth or prevent cell death. The first type is the target of many therapies, which inhibit cell growth. But it's much harder to develop therapies that restore malfunctioning genes that should be triggering cell death in abnormal cells, known as tumor-suppressor genes.

Rather than target a tumor-suppressor gene directly, Ideker and team took the approach of identifying genetic interactions between a tumor suppressor gene and another gene, such that simultaneous disruption of both genes selectively kills cancer cells.

The researchers first used yeast to quickly and cheaply screen 169,000 interactions between yeast versions of human tumor-suppressor genes and genes that can be inhibited with drugs, sometimes called "druggable" targets. To do this, they deleted each gene one at a time, in combination with another mutation. Those experiments whittled down the best combinations—those lethal to the yeast cells—to a few thousand.

Next the team prioritized 21 drugs for which the yeast druggable targets were involved in the greatest number of cell-lethal interactions. They tested these drugs one at a time for lethal interaction with 112 different tumor-suppressor gene mutations in human cancer cells growing in the lab.

The researchers ended up with 172 drug- combinations that successfully killed both yeast and human . Of these combinations, 158 had not been previously discovered.

Here's one example of how this information might be useful for doctors and patients: Irinotecan is a drug only indicated by the FDA for use in colon cancer. But this study suggests that this class of drugs should be evaluated for efficacy in any tumor with a mutation that inhibits RAD17, a that normally helps cells fix damaged DNA.

The next steps will be to test these combinations in more cell types and eventually in mouse models. But 172 combinations is a lot, more than a single lab can test, the researchers say. They hope other research teams will also take their list and further test each combination in a variety of conditions. To help spread this information to scientists around the world, all of the data from this study has been made freely available on NDEx , a new network data-sharing resource developed by Ideker and UC San Diego School of Medicine data scientist Dexter Pratt.

"We've created an important translational research resource for other scientists and oncologists," said co-first author John Paul Shen, MD, clinical instructor and postdoctoral fellow at UC San Diego School of Medicine and Moores Cancer Center. "And since many of the cancer-killing interactions we discovered involve already FDA-approved drugs, it may mean they could reach clinical translation rapidly. If these results are validated in subsequent testing, in the future an oncologist will have many more options for precision therapy."

Explore further: The silencer: Study reveals how a cancer gene promotes tumor growth

More information: Molecular Cell, DOI: 10.1016/j.molcel.2016.06.022

Related Stories

The silencer: Study reveals how a cancer gene promotes tumor growth

June 23, 2016
A Yale-led study describes how a known cancer gene, EGFR, silences genes that typically suppress tumors. The finding, published in Cell Reports, may lead to the development of more effective, individualized treatment for ...

Gene mutation 'hotspots' linked to better breast cancer outcomes

June 30, 2016
Kataegis is a recently discovered phenomenon in which multiple mutations cluster in a few hotspots in a genome. The anomaly was previously found in some cancers, but it has been unclear what role kataegis plays in tumor development ...

Genetic signatures expose drug susceptibility in breast cancer cells

June 25, 2016
Drug treatments for breast cancer patients might soon be designed based on the unique genetic autograph of their tumor.

New tool mines whole-exome sequencing data to match cancer with best drug

March 29, 2016
A University of Colorado Cancer study published today in the Journal of the American Medical Informatics Association (JAMIA) describes a new tool that interprets the raw data of whole exome tumor sequencing and then matches ...

Study sheds light on role of mutations in metastasized cancer

July 6, 2016
Approximately 95 percent of cancer mortality is caused by metastasis. This fact is what motivates many cancer researchers to focus on finding new ways to stop or kill the growth of metastatic cancer cells. A new paper published ...

Recommended for you

Alternative splicing, an important mechanism for cancer

September 22, 2017
Cancer, which is one of the leading causes of death worldwide, arises from the disruption of essential mechanisms of the normal cell life cycle, such as replication control, DNA repair and cell death. Thanks to the advances ...

'Labyrinth' chip could help monitor aggressive cancer stem cells

September 21, 2017
Inspired by the Labyrinth of Greek mythology, a new chip etched with fluid channels sends blood samples through a hydrodynamic maze to separate out rare circulating cancer cells into a relatively clean stream for analysis. ...

Drug combination may improve impact of immunotherapy in head and neck cancer

September 21, 2017
Checkpoint inhibitor-based immunotherapy has been shown to be very effective in recurrent and metastatic head and neck cancer but only in a minority of patients. University of California San Diego School of Medicine researchers ...

Whole food diet may help prevent colon cancer, other chronic conditions

September 21, 2017
A diet that includes plenty of colorful vegetables and fruits may contain compounds that can stop colon cancer and inflammatory bowel diseases in pigs, according to an international team of researchers. Understanding how ...

New kinase detection method helps identify targets for developing cancer drugs

September 21, 2017
Purdue University researchers have developed a high-throughput method for matching kinases to the proteins they phosphorylate, speeding the ability to identify multiple potential cancer drug targets.

Poliovirus therapy induces immune responses against cancer

September 20, 2017
An investigational therapy using modified poliovirus to attack cancer tumors appears to unleash the body's own capacity to fight malignancies by activating an inflammation process that counter's the ability of cancer cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.