Mitochondria are exploited in cancer for tumor cell motility and metastatic competence

July 7, 2016
Mitochondria. Credit: Wikipedia commons

As the powerhouse of the cells, mitochondria are critical for every organism because of their role in producing energy while also controlling survival, but how they function in cancer is still not completely known. This is particularly important because, in general, tumor cells proliferate more than normal tissues, and scientists have speculated that mechanisms that preserve mitochondrial function are responsible for supporting tumor expansion.

Now, scientists at The Wistar Institute have identified a specific network of proteins present in mitochondria of that is essential for maintaining a clean function of mitochondria, enabling not only the proliferation of tumor cells but also their ability to move and invade distant organs. By understanding the players involved, Wistar scientists were able to turn off individual subunits within the network, which greatly reduced the ability of to grow and spread, suggesting an attractive new therapeutic target. The findings were published in the journal PLOS Biology.

"This is an example of how tumors can quickly adapt to cope with their own higher biosynthetic needs," said Dario C. Altieri, M.D., President and CEO of The Wistar Institute, director of The Wistar Institute Cancer Center, the Robert & Penny Fox Distinguished Professor, and lead author of the study. "Mitochondria play a crucial role in a tumor's ability to process the energy needed to grow and spread, so identifying the mechanisms of how tumors maintain the function of mitochondria and exploit it to support abnormal cell proliferation and metastatic spread may uncover new therapeutic targets in a wide variety of cancers."

Prior studies provided evidence that the ability to control the folding and stability of proteins, or proteostasis, was important to reduce cellular stress. It has also been known that tumors hijack mechanisms of proteostasis to their advantage, but how this happened in mitochondria had remained largely unknown. The network described by the Wistar scientists answers this question and confirmed its important role in tumor development. In particular, one of the components of this network - ClpP - was found universally overexpressed in primary and metastatic human cancer and correlates to shortened patient survival. In this study alone, the scientists identified overexpression of this subunit in breast, prostate, colon and lung cancers as well as melanoma and lymphoma.

"There's quite a bit of interest in targeting pathways involved in function, and we've identified one such pathway that may provide a 'drugable' target for a variety of cancers," said Jae Ho Seo, Ph.D., a postdoctoral fellow in the Altieri lab at Wistar and first author of the study. "Other studies have shown that it is feasible to target mitochondrial proteins in preclinical models, so disrupting the network we identified in this study could shut off key processes that lead to tumor progression."

Explore further: Treatment with PI3K inhibitors may cause cancers to become more aggressive and metastatic

More information: PLOS Biology, DOI: 10.1371/journal.pbio.1002507

Related Stories

Treatment with PI3K inhibitors may cause cancers to become more aggressive and metastatic

June 29, 2015
The enzyme phosphatidylinositol-3 kinase (PI3K) appears to be exploited in almost every type of human cancer, making it the focus of considerable interest as a therapeutic target, with many PI3K-inhibiting drugs currently ...

'Rewired' mice show signs of longer lives with fewer age-related illnesses

July 31, 2014
While developing a new cancer drug, researchers at The Wistar Institute discovered that mice lacking a specific protein live longer lives with fewer age-related illnesses. The mice, which lack the TRAP-1 protein, demonstrated ...

Protein in metabolic reprogramming restrains senescent cells from becoming cancerous

April 30, 2015
In recent years, research has shown that cancerous cells have a different metabolism—essential chemical and nutritional changes needed for supporting the unlimited growth observed in cancer—than normal cells. Now, scientists ...

Team finds mitochondrial stress induces cancer-related metabolic shifts

July 6, 2016
Cancerous tumors must be fed. Their unregulated growth requires a steady stream of blood flow and nutrients. Thus, one way that researchers have tried to wipe out cancer is to target cells undergoing the metabolic shifts ...

Exploiting the stress response to detonate mitochondria in cancer cells

April 19, 2011
Researchers at The Wistar Institute have found a new way to force cancer cells to self-destruct. Low doses of one anti-cancer drug currently in development, called Gamitrinib, sensitize tumor cells to a second drug, called ...

Recommended for you

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.