Protein ZMYND8 tied to suppression of prostate cancer tumor metastasis

July 28, 2016, University of Texas M. D. Anderson Cancer Center

Although it reads like European license plate number, a protein known as ZMYND8 has demonstrated its ability to block metastasis-linked genes in prostate cancer, according to a study at The University of Texas MD Anderson Cancer Center. The findings, resulting from cell line and mouse model studies, are published in the July 28 online issue of Molecular Cell.

"These findings are important as cancer metastasis is a complicated process and is both devastating and clinically challenging," said Min Gyu Lee, Ph.D., associate professor of Molecular and Cellular Oncology. "For metastasis, cancer cells acquire migratory and invasive abilities and so gaining new insight into how this occurs and how to stop metastasis is crucial. We believe this study opens a window into this process."

Lee's study centered on modification of proteins crucial to gene regulation, known as histones. Alterations in histone modifications, including acetylation and methylation, are frequently associated with development. Lee's group looked at ZMYND8 as a histone "reader" that could possibly impact by recognizing these known as histone "marks."

"It has been well documented that the effects of histone acetylation and methylation on gene expression can be mediated by specific binding proteins called 'readers,'" said Lee. "We identified ZMYND8 as a reader for histone marks called H3K4me1 and H3K14ac, both of which are tied to metastasis-linked genes."

The research group also noted that ZMYND8 cooperated with a type of histone mark "eraser" called JARID1D to suppress metastasis-linked genes.

"These findings are of special interest in light of our earlier study that JARID1D levels are lower in metastasized prostate tumors than in normal prostate and primary tumors," said Lee. "This study revealed a previously unknown metastasis-suppressive mechanism in which ZMYND8 counteracts the expression of metastasis-linked genes by reading dual histone marks H3K4me1 and H3K14ac and cooperating with JARID1D."

Explore further: Mouse model shows that Notch activation can drive metastatic prostate cancer

Related Stories

Mouse model shows that Notch activation can drive metastatic prostate cancer

June 13, 2016
Notch signaling is involved in prostate cancer and, in a paper published today in The Journal of Clinical Investigation, researchers from Baylor College of Medicine and other institutions have shown that, in a mouse model ...

Altered primary chromatin structures and their implications in cancer development

April 26, 2016
Cancer development is a complex process involving both genetic and epigenetic changes. Genetic changes in oncogenes and tumor-suppressor genes are generally considered as primary causes, since these genes may directly regulate ...

Recommended for you

Do prostate cancer cells have an Achilles' heel?

April 25, 2018
Researchers at the University of Illinois at Chicago describe new ways to selectively kill prostate cancer cells by exploiting the cells' revved-up metabolism. They report their findings in the online journal, eLife.

Research shows possible new target for immunotherapy for solid tumors

April 24, 2018
Research from the University of Cincinnati (UC) reveals a potential new target to help T cells (white blood cells) infiltrate certain solid tumors.

Changes in breast tissue increase cancer risk for older women

April 24, 2018
Researchers in Norway, Switzerland, and the United States have identified age-related differences in breast tissue that contribute to older women's increased risk of developing breast cancer. The findings, published April ...

Targeting molecules called miR-200s and ADAR2 could prevent tumor metastasis in patients with colorectal cancer

April 24, 2018
Colorectal cancer is the third most common cancer worldwide and the third-leading cause of cancer-related deaths. The main cause of death in patients with colorectal cancer is liver metastasis, with nearly 70% of patients ...

Experimental arthritis drug prevents stem cell transplant complication

April 24, 2018
An investigational drug in clinical trials for rheumatoid arthritis prevents a common, life-threatening side effect of stem cell transplants, new research from Washington University School of Medicine in St. Louis shows. ...

Scientists develop a new model for glioblastoma using gene-edited organoids

April 24, 2018
Glioblastoma multiforme (GBM) is an incredibly deadly brain cancer and presents a serious black box challenge. It's virtually impossible to observe how these tumors operate in their natural environment and animal models don't ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.