Red hair gene variation drives up skin cancer mutations

July 12, 2016, Wellcome Trust Sanger Institute
Melanoma in skin biopsy with H&E stain — this case may represent superficial spreading melanoma. Credit: Wikipedia/CC BY-SA 3.0

For the first time, researchers at the Wellcome Trust Sanger Institute and University of Leeds have proved that gene variants associated with red hair, pale skin and freckles are linked to a higher number of genetic mutations in skin cancers. The burden of mutations associated with these variants is comparable to an extra 21 years of sun exposure in people without this variant.

The research, published today in Nature Communications, showed that even a single copy of a -associated MC1R gene variant increased the number of mutations in melanoma ; the most serious form of skin cancer. Many non-red haired people carry these common variants and the study shows that everyone needs to be careful about sun exposure.

Red-headed people make up between one and two percent of the world's population but about 6 per cent of the UK population. They have two copies of a variant of the MC1R gene which affects the type of melanin pigment they produce, leading to red hair, freckles, pale skin and a strong tendency to burn in the sun.

Dr David Adams, joint lead researcher at the Wellcome Trust Sanger Institute, said: "It has been known for a while that a person with red hair has an increased likelihood of developing skin cancer, but this is the first time that the gene has been proven to be associated with skin cancers with more mutations.

"Unexpectedly, we also showed that people with only a single copy of the gene variant still have a much higher number of tumour mutations than the rest of the population. This is one of the first examples of a common genetic profile having a large impact on a cancer genome and could help better identify people at higher risk of developing skin cancer."

The researchers analysed publically available data-sets of tumour DNA sequences collected from more than 400 people. They found an average of 42 per cent more sun-associated mutations in tumours from people carrying the .

Professor Tim Bishop, joint lead author and Director of the Leeds Institute of Cancer and Pathology at the University of Leeds, said: "This is the first study to look at how the inherited MC1R gene affects the number of in skin cancers and has significant implications for understanding how skin cancers form. It has only been possible due to the large-scale data available. The tumours were sequenced in the USA, from patients all over the world and the data was made freely accessible to all researchers. This study illustrates how important international collaboration and free public access to data-sets is to research."

Exposure to ultraviolet light from either sunlight or sunbeds causes damage to DNA and it has been thought that the type of skin pigment associated with red-heads could allow more UV to reach the DNA. While this may be one mechanism of damage, the study also revealed that the MC1R gene variation not only increased the number of spontaneous mutations caused by ultraviolet light, but also raised the level of other in the tumours. This suggests that biological processes exist in cancer development in people with MC1R variation that are not solely related to ultraviolet light.

Dr Julie Sharp, head of health and patient information at Cancer Research UK, said: "This important research explains why red-haired people have to be so careful about covering up in strong sun. It also underlines that it isn't just with red hair who need to protect themselves from too much sun. People who tend to burn rather than tan, or who have fair skin, hair or eyes, or who have freckles or moles are also at higher risk.

"For all of us the best way to protect when the sun is strong is to spend time in the shade between 11am and 3pm, and to cover up with a t-shirt, hat and sunglasses. And sunscreen helps protect the parts you can't cover; use one with at least SPF15 and 4 or more stars, put on plenty and reapply regularly."

Explore further: How old do you look? Study finds an answer in our genes

More information: Carla D. Robles-Espinoza, Nicola D. Roberts, Shuyang Chen et al. (2016) Germline MC1R status influences somatic mutation burden in melanoma. Nature Communications, DOI: 10.1038/NCOMMS12064

Related Stories

How old do you look? Study finds an answer in our genes

April 28, 2016
Researchers reporting in the Cell Press journal Current Biology on April 28 have found a gene that helps explain why some people appear more youthful than others.

New study helps scientists understand melanoma development

July 15, 2014
(Medical Xpress)—A new study by University of Kentucky researchers shows how a genetic defect in a specific hormonal pathway may make people more susceptible to developing melanoma, the deadliest type of skin cancer.

Study helps explain increased melanoma risk in individuals with red hair

August 22, 2013
A person's skin pigment, which determines hair color and skin tone, is influenced by the melanocortin-1 (MC1R) gene receptor. For the population's one to two percent of redheads, a mutation in MC1R accounts for their red ...

Blue-eyed people may face higher melanoma risk

November 19, 2014
(HealthDay)—New research suggests that genes tied to blue eyes and red hair could put people at higher risk for moles or freckling in childhood, which are often precursors to the deadly skin cancer melanoma later in life.

Using healthy skin to identify cancer's origins

May 21, 2015
Normal skin contains an unexpectedly high number of cancer-associated mutations, according to a study published in Science. The findings illuminate the first steps cells take towards becoming a cancer and demonstrate the ...

Evolutionary medicine of skin cancer risk among Europeans

September 17, 2013
The proclivity of Spaniards to bask in regions like the Costa del Sol while their northern European counterparts must stay under cover to protect their paler skin or risk skin cancer is due in large part to the pigment producing ...

Recommended for you

Researchers identify a mechanism that fuels cancer cells' growth

November 14, 2018
Scientists at the UCLA Jonsson Comprehensive Cancer Center have identified sodium glucose transporter 2, or SGLT2, as a mechanism that lung cancer cells can utilize to obtain glucose, which is key to their survival and promotes ...

A new approach to detecting cancer earlier from blood tests: study

November 14, 2018
Cancer scientists led by principal investigator Dr. Daniel De Carvalho at Princess Margaret Cancer Centre have combined "liquid biopsy", epigenetic alterations and machine learning to develop a blood test to detect and classify ...

New antibody breakthrough to lead the fight against cancer

November 14, 2018
Scientists at the University of Southampton have developed a new antibody that could hold the key to unlocking cancer's defence against the body's immune system.

Photoacoustic imaging may help doctors detect ovarian tumors earlier

November 14, 2018
Ovarian cancer claims the lives of more than 14,000 in the U.S. each year, ranking fifth among cancer deaths in women. A multidisciplinary team at Washington University in St. Louis has found an innovative way to use sound ...

Solving the mystery of NPM1 in acute myeloid leukemia

November 13, 2018
Although it has long been recognized that mutations of gene NPM1 play an important role in acute myeloid leukemia, no one has determined how the normal and the mutated forms of the protein NPM1 function.

Cognitive decline—radiation—brain tumor prevented by temporarily shutting down immune response

November 13, 2018
Treating brain tumors comes at a steep cost, especially for children. More than half of patients who endure radiation therapy for these tumors experience irreversible cognitive decline, a side-effect that has particularly ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.