Scientists discover that modifications to protein RUNX3 may promote cancer growth

July 15, 2016, National University of Singapore

Scientists from the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore (NUS) have discovered that modifications to a protein called RUNX3 may promote cancer progression. The results of the study were published in the prestigious journal Proceedings of the National Academy of Sciences (PNAS) in June 2016.

The research team, led by Professor Yoshiaki Ito, Senior Principal Investigator at CSI Singapore, found that a modification called made to RUNX3 promotes by allowing cell division. Uncontrolled cell division in the body is a process by which tumours form and hence is a hallmark of . RUNX3 is a tumour suppressor gene that prevents the formation of tumours by binding to DNA.

The phosphorylation, or the addition of a phosphate group to a molecule, is carried out by an enzyme called Aurora Kinase, which has been observed to be present in unusually high levels in some cancers. Phosphorylation prevents the binding of RUNX3 to DNA, resulting in RUNX3 relocating to centrosomes, intracellular organelles that control the start of cell division.

"This study identifies a new post-translational modification to RUNX3, which provides RUNX3 with a novel role in the regulation of cell division. Our results suggest that frequent overexpression of Aurora Kinase in cancer may reduce RUNX3 transcription activity, leading to and formation of tumours. Understanding the molecular mechanisms underlying Aurora kinase-overexpressing tumours will help in the design of targeted and personalised cancer therapy," said Dr Linda Chuang, Senior Research Scientist at CSI Singapore, who is the first author of the study.

"Unlike other modifications which stem from changes to the RUNX3 DNA itself or how DNA is read, phosphorylation does not accompany any changes in the DNA and is hence undetectable at the genetic level. Given that modifications such as phosphorylation are likely to be impermanent and reversible, the clinical implications are far-ranging. Moving forward, the team is looking into ways to assess the feasibility of enhancing RUNX tumour suppression or inhibiting RUNX mitotic function to kill rapidly proliferating cancer cells," said Prof Ito.

Explore further: Researchers discover novel protein complex with potential to combat gastric cancer caused by bacterial infection

More information: Linda Shyue Huey Chuang et al. Aurora kinase-induced phosphorylation excludes transcription factor RUNX from the chromatin to facilitate proper mitotic progression, Proceedings of the National Academy of Sciences (2016). DOI: 10.1073/pnas.1523157113

Related Stories

Researchers discover novel protein complex with potential to combat gastric cancer caused by bacterial infection

July 4, 2014
A team of scientists from the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore (NUS) discovered that a protein named IL23A is part of our stomach's defence against bacterial infection ...

Scientists find the "missing link" in important tumour suppression mechanism

November 12, 2013
Novel discovery relating to the function of RUNX3 gene provides new insights on human defence mechanism against early stages of lung cancer development

Team identifies new breast cancer tumor suppressor and how it works

June 27, 2011
Researchers have identified a protein long known to regulate gene expression as a potent suppressor of breast cancer growth. Their study, in the journal Oncogene, is the first to demonstrate how this protein, known as Runx3, ...

Scientists discover that drug used for DNA repair defects could treat leukaemia and other cancers more effectively

August 25, 2014
A team of scientists led by Research Associate Professor Motomi Osato and Professor Yoshiaki Ito from the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore (NUS) found that a drug ...

New target discovered for food allergy treatment

November 1, 2012
Researchers at National Jewish Health have discovered a novel target for the treatment of food allergies. Erwin Gelfand, MD, and his colleagues report in the October 2012 issue of the Journal of Allergy and Clinical Immunology ...

Recommended for you

Machine-learning algorithm used to identify specific types of brain tumors

March 15, 2018
An international team of researchers has used methylation fingerprinting data as input to a machine-learning algorithm to identify different types of brain tumors. In their paper published in the journal Nature, the team ...

Higher doses of radiation don't improve survival in prostate cancer

March 15, 2018
A new study shows that higher doses of radiation do not improve survival for many patients with prostate cancer, compared with the standard radiation treatment. The analysis, which included 104 radiation therapy oncology ...

Joint supplement speeds melanoma cell growth

March 15, 2018
Chondroitin sulfate, a dietary supplement taken to strengthen joints, can speed the growth of a type of melanoma, according to experiments conducted in cell culture and mouse models.

Improved capture of cancer cells in blood could help track disease

March 15, 2018
Tumor cells circulating throughout the body in blood vessels have long been feared as harbingers of metastasizing cancer - even though most free-floating cancer cells will not go on to establish a new tumor.

Area surrounding a tumor impacts how breast cancer cells grow

March 14, 2018
Cancer is typically thought of as a tumor that needs to be removed or an area that needs to be treated with radiation or chemotherapy. As a physicist and cancer researcher, Joe Gray, Ph.D., thinks differently.

Obesity may promote resistance to antiangiogenic therapy for breast cancer

March 14, 2018
Obesity—which is already known to reduce survival in several types of cancer—may explain the ineffectiveness of angiogenesis inhibitors in the treatment of breast cancer. A research team led by Massachusetts General Hospital ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.