Researchers discover how human immune receptors become activated in the presence of harmful substances

August 30, 2016
Researchers discover how human immune receptors become activated in the presence of harmful substances
The hallmark of an adaptive immune system is the ability of T-cells to recognise foreign substances, that are potentially harmful. Credit: Shutterstock

In George Orwell's classic dystopian novel Animal Farm, as the barnyard devolves into chaos the slogan "all animals are equal" quickly becomes "all animals are equal but some animals are more equal than others".

The same might be true for the tiny immune scattered across the surface of our T-cells. Before now, it was unclear how these complex molecular receptors recognised harmful invaders (or antigens) and sent warning signals into the cell. It was largely assumed that "all receptors were equal".

But a "Eureka moment" inside the UNSW Single Molecule Science lab has flipped this assumption. Using powerful imaging technology and some of Australia's only super-resolution microscopes that can zoom in to the level of a single molecule, researchers have viewed this critical first-stage in the , inside a single functional T-cell, in unprecedented detail.

"Our findings have a touch of Animal Farm," says UNSW Scientia Professor Katharina Gaus, who oversaw the research. "Although all receptors in a single T-cell are genetically and biochemically identical, they are not functionally identical."

Despite being bombarded with antigens, the UNSW team found that only 25 percent of receptors on the T-cell were activated at a given time. Importantly, they found that this performance disparity was linked to spatial organisation on the cell's surface.

"If they're clustered together in a crowded environment they're much more likely to switch on than a receptor with no neighbours around it," says Dr Sophie Pageon, the study's lead author.

The team's findings, published today in the Proceedings of the National Academy of Sciences, describe a novel analysis method to distinguish signalling from non-signalling receptors in the same T-cell. This provides a valuable pathway to turn vital receptors back on and improve our immune response to deadly infections and cancers.

Credit: University of New South Wales

"Without reprogramming or genetically changing the whole T-cell, we can tune its sensitivity by corralling the receptors together, so they are densely clustered on the surface of the cell in a more optimal distribution," says Professor Gaus.

"In people with cancer, for example, T-cells eventually become inactive or exhausted. Taking what we now know about the T-cell clusters, we can develop strategies to rescue these T-cells, and turn the receptors back on."

She says her team has already developed a nanotechnology device that can re-arrange receptors on T-cells. Pending funding outcomes, they will begin experiments in mouse models, and should have a proof-of-principle ready within three years.

The crucial first stage of the immune response

The hallmark of an adaptive is the ability of T-cells to recognise antigens, or foreign substances, that are potentially harmful. Tiny receptors on the external surface of T-cells bind to the antigens, and translate biochemical activity outside the cell into warning signals, which are passed intracellularly to the nucleus. The nucleus then activates the program's response and the killing of the infected cell or cancer cell.

"But these receptors do more than just flick a switch, to tell the cell 'yes or no'," says Professor Gaus. "It's almost like they have an artificial intelligence. They translate the complex biochemical binding event outside the cell into a warning signal, and they encode the level of response that's needed to effectively counteract the threat at the exact right time."

This is vital: should the immune system overreact, the body's T-cells might actually begin to attack our tissues and make us sick. On the other hand, if the immune system underreacts, we become more vulnerable to infections.

"It's quite astonishing. The quality control of the whole immune response happens at this molecular level," she says. "What sets our lab apart is that we are able to pinpoint this process by imaging individual molecules in single T-cells, and going right down to the molecular level to see how this mechanism works."

Explore further: Super-resolution microscopy reveals unprecedented detail of immune cells' surface

More information: Functional role of T-cell receptor nanoclusters in signal initiation and antigen discrimination, PNAS,

Related Stories

Super-resolution microscopy reveals unprecedented detail of immune cells' surface

June 15, 2016
When the body is fighting an invading pathogen, white blood cells—including T cells—must respond. Now, Salk Institute researchers have imaged how vital receptors on the surface of T cells bundle together when activated.

Engineering the immune system to kill cancer cells

June 15, 2016
In late 2015, former President Jimmy Carter announced that he was free of the metastatic melanoma that had spread to his liver and brain. In addition to surgery and radiation, Carter was treated with an immunotherapy drug, ...

New model of T cell activation

May 27, 2016
T cell receptors are an important part of the human immune system. They are able to switch their conformation from an inactive to an active state spontaneously without any antigens present. Cholesterol binds and stabilizes ...

Artificial receptors kill cells infected with the virus that causes AIDS, study finds

July 15, 2016
A type of immunotherapy that has shown promising results against cancer could also be used against HIV, the virus that causes AIDS.

Receptor suppresses the immune response in order to save it

June 29, 2016
When viruses enter the body, they activate receptors on the surface of cells that allow viruses to invade those cells. A Yale-led team has found that one of the receptors, known as AXL, actually plays an essential role in ...

Researchers find more uses for immune system's 'Swiss army knife'

June 23, 2016
Oxford University research has found that a little-studied and relatively unknown part of the human immune system could be twice as important as previously thought.

Recommended for you

How a poorly explored immune cell may impact cancer immunity and immunotherapy

November 17, 2017
The immune cells that are trained to fight off the body's invaders can become defective. It's what allows cancer to develop. So most research has targeted these co-called effector T-cells.

Asthma attacks reduced in tree-lined urban neighborhoods

November 17, 2017
People living in polluted urban areas are far less likely to be admitted to hospital with asthma when there are lots of trees in their neighbourhood, a study by the University of Exeter's medical school has found.

How the immune system identifies invading bacteria

November 16, 2017
The body's homeland security unit is more thorough than any airport checkpoint. For the first time, scientists have witnessed a mouse immune system protein frisking a snippet of an invading bacterium. The inspection is far ...

Can asthma be controlled with a vitamin supplement?

November 16, 2017
The shortness of breath experienced by the nearly 26 million Americans who suffer from asthma is usually the result of inflammation of the airways. People with asthma typically use albuterol for acute attacks and inhaled ...

Newly found immune defence could pave way to treat allergies

November 16, 2017
Scientists have made a fundamental discovery about how our body's immune system clears harmful infections.

Study finds asthma and food allergies predictable at age 1

November 15, 2017
Children at one year old who have eczema or atopic dermatitis (AD) and are sensitized to an allergen are seven times more likely than other infants to develop asthma, and significantly more likely to have a food allergy by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.