Study unpeels one layer of the mystery of sleep as they develop understanding of the sleep homeostat

August 3, 2016
The concept of the sleep homeostat. Credit: Centre for Neural Circuits and Behaviour/ University of Oxford

Oxford University researchers have discovered what causes a switch to flip in our brains and wake us up. The discovery, published in the journal Nature, brings us closer to understanding the mystery of sleep.

Sleep is governed by two systems—the circadian clock and the sleep homeostat. While the circadian clock is quite well understood, very little is known about the sleep homeostat.

Professor Gero Miesenböck, in whose laboratory the new research was conducted, explained: 'The allows us to anticipate predictable changes in our environment that are caused by the Earth's rotation. As such, it makes sure we do our sleeping when it hurts us least, but it doesn't speak to the mystery of why we need to sleep in the first place.

'That explanation will likely come from understanding the second controller—called the sleep homeostat. The homeostat measures something—and we don't know what that something is—that happens in our brains while we are awake, and when that something hits a certain ceiling, we go to sleep. The system is reset during sleep, and the cycle begins anew when we wake up.'

The team studied the sleep homeostat in the brain of fruit flies—the animal that also provided the first insights into circadian timekeeping, some 45 years ago. Each fly has around two dozen sleep-control , that are also found in other animals and believed to exist in people. These neurons convey the output of the sleep homeostat: If the neurons are electrically active, the fly is asleep, and when they are silent, the fly is awake.

To switch the neurons the team relied on a technique called optogenetics, discovered by Miesenböck in 2002, in which pulses of light are used to switch on and off the activity of brain cells. In the current work, optogenetics was used to stimulate the production of the messenger chemical dopamine.

The video will load shortly
Lead authors Drs. Diogo Pimental and Jeff Donlea describe their research into what causes the sleep homeostat -- a 'switch' in the brain -- to flip and wake us up, and the discovery of the 'Sandman' ion channel. It includes a clip of a fly being woken up by optogenetically stimulated dopamine release (starts 1'10"), and an animation explaining how Sandman works (starts 2'09"). Credit: Centre for Neural Circuits and Behaviour/ University of Oxford

In people, drugs that act as psychostimulants (such as cocaine) increase dopamine levels in the brain, and this effect was also seen in the flies. When the dopaminergic system was activated, the sleep-control neurons fell silent and the fly woke up. If the team stopped the dopamine delivery and waited for a while, the sleep-control neuron flipped back to the electrically active state and the fly went back to sleep.

The sleep switch is a 'hard' switch, meaning that it is either on or off. 'That makes sense,' said Miesenböck. 'You want to be either asleep or awake but not drift through twilight states.'

Dr Diogo Pimentel, one of the two lead authors of the study, said: 'Being able to operate the sleep switch at will has given us a chance to find out how it works.'

When sleep-control neurons are electrically active, an ion channel the researchers discovered and called Sandman is kept inside. Ion channels control the electrical impulses through which brain cells communicate. When dopamine is present, it causes Sandman to move to the outside of the cell. Sandman then effectively short-circuits the neurons and shuts them off—leading to wakefulness.

Lead author Dr Jeff Donlea said: 'In principle, this is a device that's similar to the thermostat on the wall of your living room. But instead of measuring temperature and turning on the heat when it is too cold, this device turns on sleep when your sleep need exceeds a set point.'

As Prof. Miesenböck explained: 'The billion-dollar question in all of this is: what is the equivalent of temperature in this system? In other words, what does the sleep homeostat measure? If we knew the answer, we'd be one giant step closer to unraveling the mystery of .'

Explore further: Scientists identify the switch that says it's time to sleep

More information: Diogo Pimentel et al, Operation of a homeostatic sleep switch, Nature (2016). DOI: 10.1038/nature19055

Related Stories

New fruitfly sleep gene promotes the need to sleep

February 4, 2014

All creatures great and small, including fruitflies, need sleep. Researchers have surmised that sleep – in any species—is necessary for repairing proteins, consolidating memories, and removing wastes from cells. But, ...

Study finds no link between sleep apnea and joint pain

August 1, 2016

Consistent with previous reports, poor sleep quality was linked with joint pain in a recent Arthritis Care & Research study of the general population, but the study found no association between obstructive sleep apnea and ...

Recommended for you

Forgetting can make you smarter

June 21, 2017

For most people having a good memory means being able to remember more information clearly for long periods of time. For neuroscientists too, the inability to remember was long believed to represent a failure of the brain's ...

Serotonin improves sociability in mouse model of autism

June 21, 2017

Scientists at the RIKEN Brain Science Institute (BSI) in Japan have linked early serotonin deficiency to several symptoms that occur in autism spectrum disorder (ASD). Published in Science Advances, the study examined serotonin ...

Three ways neuroscience can advance the concussion debate

June 21, 2017

While concussion awareness has improved over the past decade, understanding the nuances of these sports injuries, their severity, symptoms, and treatment, is still a work in progress. In the June 21 issue of Neuron, UCLA ...

The brain mechanism behind multitasking

June 21, 2017

Although "multitasking" is a popular buzzword, research shows that only 2% of the population actually multitasks efficiently. Most of us just shift back and forth between different tasks, a process that requires our brains ...

Untangling the complex puzzle of optic nerve regeneration

June 21, 2017

The optic nerve is vital for vision—damage to this critical structure can lead to severe and irreversible loss of vision. Fengfeng Bei, PhD, a principal investigator in the Department of Neurosurgery at Brigham and Women's ...

Researchers discover brain inflammation in people with OCD

June 21, 2017

A new brain imaging study by the Centre for Addiction and Mental Health (CAMH) shows for the first time that brain inflammation is significantly elevated - more than 30 per cent higher - in people with obsessive-compulsive ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.