Asthma study provides 'paradigm shift' in understanding of life-threatening condition

October 27, 2016
Dr Yassine Amrani. Credit: University of Leicester

A new study led by the University of Leicester to understand how to improve the health of severe asthma patients has made a breakthrough finding.

Researchers have described their discovery as a 'paradigm shift' in understanding the life-threatening condition.

The international team from the Department of Infection, Immunity and Inflammation, University of Leicester, and the Department of Pharmaceutical Sciences, Jefferson School of Pharmacy, Thomas Jefferson University, discovered the presence of increased amounts of a protein – called PP5 – in the lungs of patients.

They found that PP5 blocks the effects of the best medicines in improving the condition.

This now provides researchers with a target in order to try and help improve the symptoms of the condition in sufferers. The team has published their findings in the journal Allergy—the European Journal of Allergy and Clinical Immunology.

The lead author of the study, Dr Yassine Amrani, Associate Professor in Respiratory Immunology at the University of Leicester, said: "The goal of this study was to provide mechanistic insight into the reasons why our best anti-asthma drugs called 'corticosteroids' provide little clinical benefit in patients with a severe form of the disease. This is an unmet clinical need.

"Because of the lack of response to treatment, these severe patients have a very poor quality of life, suffer from recurrent asthma attack and are more likely to be hospitalised and to possibly die from their disease. Severe asthma poses a veritable therapeutic challenge for medical researchers in the field."

The researchers first performed test tube experiments using cells from healthy and severe asthma patients isolated using bronchoscopy to identify the proteins that interfere with the beneficial action of corticosteroids in the lungs. This type of laboratory experiment allows the team to make conclusions about cause and effect at the cell level.

The study also validated the test tube findings by observing the presence of PP5 in people. The researchers looked at whether these inhibitory proteins were abnormally expressed in the lungs of severe patients. The team is interested in lung cells because they are the first to encounter the anti-asthma drugs when given as inhalers.

Dr Amrani said: "The study demonstrated for the first time that a protein called PP5 was significantly upregulated in the lungs of severe asthmatic patients compared to healthy controls. The study allowed us to show that this protein was playing a key role in suppressing the anti-inflammatory action of corticosteroid, thus identifying this protein as a potential new player in reducing patients' response to ."

Dr Amrani added that the basic mechanisms explaining the reduced therapeutic response to corticosteroids in severe asthma have not been clearly defined.

Dr Amrani said: "Previous studies by experts in this field have provided some possible mechanisms but were done mostly in non-lung cells. The originality of our work is demonstrated in that the blunted response to therapy in severe asthma may derive from a reduced sensitivity of key lung structural cells such as the airway muscle tissue which is responsible for the acute asthma attacks via their ability to narrow the airways. We provide evidence that the airway muscle tissue behaves like an inflammatory cell that is capable of producing different asthmatic factors known to be involved in severe asthma."

The researchers say that their study shows that some severe asthma patients - despite being compliant to their treatment - may fail to properly benefit from their corticosteroid therapy because of the presence of heightened inhibitory signals driven by this protein called PP5 which blunts patients' response to their best medicine.

Understanding the mechanisms driving this abnormal expression of PP5 in severe asthma could lead to novel treatments.

Dr Amrani added: "We are extremely excited by this paradigm shift observation as a recent study from a different group provided additional evidence for a role of PP5 in blunting corticosteroid response in asthma. Whether assessing the expression levels of PP5 could serve as a biomarker to determine patients' response to therapy needs to be further explored."

Explore further: uPAR elevated in bronchial tissue of asthma patients

More information: L. Chachi et al. Protein phosphatase 5 mediates corticosteroid insensitivity in airway smooth muscle in patients with severe asthma, Allergy (2016). DOI: 10.1111/all.13003

Related Stories

uPAR elevated in bronchial tissue of asthma patients

September 23, 2016
(HealthDay)—Urokinase plasminogen activator receptor (uPAR) is elevated in patients with asthma, with high uPAR levels linked to severe, non-atopic disease, according to a study published online Sept. 14 in Allergy.

Study reveals new way lungs respond in asthma attacks

April 4, 2016
Scientists have discovered a new way in which the lungs operate during asthma that could lead to new treatments for the disease.

Hope of new treatment for severe asthma patients

October 25, 2013
New research from Japan brings hope of a new treatment for asthma patients resistant to corticosteroids. In a study published today in the journal Nature Communications, researchers from the RIKEN Center for Integrative Medical ...

Fighting asthma drug resistance

January 10, 2014
Current asthma treatments include drugs that open up the tubes of the lungs and corticosteroids that fight lung inflammation. Some patients, however, are stubbornly resistant to corticosteroids, limiting the therapies available ...

Strategy for depleting immune cells implicated in asthma-associated inflammation

May 19, 2016
Patients with asthma have chronic lung inflammation that results in sporadic narrowing of the airways and difficulty breathing. Symptoms and severity are variable among individuals; however, the cells and inflammatory factors ...

Discovery of asthma cause could help treat sufferers

October 5, 2011
(Medical Xpress) -- Scientists at the University of Bath have found a new cause of severe asthma that could help develop a treatment and potentially prevent the 1100 asthma deaths each year in the UK.

Recommended for you

Targeting 'broken' metabolism in immune cells reduces inflammatory disease

July 12, 2017
The team, led by researchers at Imperial College London, Queen Mary University of London and Ergon Pharmaceuticals, believes the approach could offer new hope in the treatment of inflammatory conditions like arthritis, autoimmune ...

A perturbed skin microbiome can be 'contagious' and promote inflammation, study finds

June 29, 2017
Even in healthy individuals, the skin plays host to a menagerie of bacteria, fungi and viruses. Growing scientific evidence suggests that this lively community, collectively known as the skin microbiome, serves an important ...

Inflammatory bowel disease: Scientists zoom in on genetic culprits

June 28, 2017
Scientists have closed in on specific genes responsible for Inflammatory Bowel Disease (IBD) from a list of over 600 genes that were suspects for the disease. The team from the Wellcome Trust Sanger Institute and their collaborators ...

Trials show unique stem cells a potential asthma treatment

June 28, 2017
A study led by scientists at Monash University has shown that a new therapy developed through stem cell technology holds promise as a treatment for chronic asthma.

Researchers find piece in inflammatory disease puzzle

May 23, 2017
Inflammation is the process by which the body responds to injury or infection but when this process becomes out of control it can cause disease. Monash Biomedicine Discovery Institute (BDI) researchers, in collaboration with ...

Researchers reveal potential target for the treatment of skin inflammation in eczema and psoriasis

May 22, 2017
Superficially, psoriasis and atopic dermatitis may appear similar but their commonalities are only skin deep. Atopic dermatitis, also known as eczema, is primarily driven by an allergic reaction, while psoriasis is considered ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.