MicroRNA specifically kills cancer cells with common mutation

October 3, 2016, University of California - San Diego
Using a mouse model, Tariq Rana, PhD, and colleagues discovered that microRNA miR-1298 specifically kills cancer cells with a common mutation in the KRAS gene. Credit: UC San Diego Health

Approximately 20 percent of all human cancers have mutations in a gene called KRAS. KRAS-mutant cancers are among the most difficult to treat, with poor survival and resistance to chemotherapy. Researchers at University of California San Diego School of Medicine and Moores Cancer Center used microRNAs—small pieces of genetic material—to systematically inhibit thousands of other genes to find combinations that are specifically lethal to cancer cells driven by a KRAS mutation.

The study, published October 3 in Cancer Research, provides new information about KRAS-driven cancers and offers a potential therapeutic target for their eradication.

"For decades researchers have tried to directly inhibit KRAS activity, but there are no well-defined binding pockets in the protein that we can target with small-molecule drugs," said senior author Tariq Rana, PhD, professor of pediatrics at UC San Diego School of Medicine and Moores Cancer Center. "Instead of trying to deter KRAS itself, we took the approach of looking for other molecules that, when inhibited, are lethal to cells only when KRAS is also mutated."

To do this, Rana and team used microRNAs, small pieces of genetic material similar to DNA. MicroRNAs don't encode proteins. Instead, microRNAs bind messenger RNAs that do encode proteins, inhibiting their translation or hastening their degradation. Normal cells use microRNAs to help control which genes are turned on or off at different times. MicroRNAs tend to be less active in .

In this study, the researchers created a library of more than a thousand human microRNA mimics, each with a different sequence and capable of binding different messenger RNA targets. First, they tested each microRNA on colorectal cells grown in the lab. Half the cells had a KRAS mutation that made the protein more active, as is the case in many cancers. The other half had normal KRAS. The microRNA sequences that killed only the KRAS-mutant cells were then tested again in a panel of lung cancer cell lines with and without KKRAS mutations.

From this screen, one microRNA in particular stood out for its ability to suppress KRAS-dependent cell growth in both colorectal and : miR-1298. MicroRNA-1298 inhibits two proteins in cancer cells, FAK and LAMB3. When the researchers silenced either of these proteins, they saw the same effect as adding miR-1298—KRAS-driven cancer cells stopped growing.

In human lung cancer tissue samples, Rana and team discovered that elevated LAMB3 levels were associated with poorer survival for patients with KRAS mutations. The researchers looked at data from a group of 259 patients for whom KRAS status and survival outcome were known. Of those, 143 were KRAS-positive and 116 were KRAS-negative. After about 10 years, survival probability for KRAS-positive patients with high LAMB3 levels was approximately 20 percent, compared to approximately 60 percent for KRAS-positive patients with low LAMB3.

"This clinical finding suggests LAMB3 could be used as a prognostic biomarker, and underscores LAMB3's potential as a therapeutic target for KRAS-driven cancers," Rana said. "What's more, it highlights miRNAs as important tools for probing complex biological processes, identifying new therapeutic targets and developing potential new RNA-based therapeutics."

Study co-authors include: Ying Zhou, Pedro Aza-Blanc, Jorge Moscat, Sanford Burnham Prebys Medical Discovery Institute (SBP); Jason Dang, Kung-Yen Chang, SBP and UC San Diego; and Edwin Yau, UC San Diego.

Explore further: Researchers investigate new strategy to block growth of colon cancer cells

More information: Y. Zhou et al. miR-1298 Inhibits Mutant KRAS-Driven Tumor Growth by Repressing FAK and LAMB3, Cancer Research (2016). DOI: 10.1158/0008-5472.CAN-15-2936

Related Stories

Researchers investigate new strategy to block growth of colon cancer cells

September 21, 2016
Researchers from Boston University School of Medicine (BUSM) have discovered a possible strategy to treat colon cancers that are caused by the mutant KRAS gene, which is responsible for approximately half of all colon cancer ...

Scientists discover new therapeutic target for lung cancer driven by KRAS

July 28, 2016
UT Southwestern Medical Center researchers have identified a new way to target lung cancer through the KRAS gene, one of the most commonly mutated genes in human cancer and one researchers have so far had difficulty targeting ...

Targeted therapies beneficial in KRAS-mutated NSCLC

August 3, 2016
(HealthDay)—Targeted therapies that do not contain erlotinib can be beneficial for patients with KRAS-mutated (KRAS mut+) advanced non-small-cell lung cancer (NSCLC), according to a study published online Aug. 1 in the ...

New clues to common and elusive KRAS cancer gene

February 4, 2016
One of the most common cancer-causing genes has continuously stymied researchers' efforts to develop treatments against it.

Cancer researchers take on an old foe

June 8, 2016
In the annals of cancer research, a protein known as KRas has become notorious. Part of a family of proteins implicated in 30 percent of cancers, KRas is considered a highly desirable but defiant drug target. Scientists have ...

Recommended for you

Single-cell study in a childhood brain tumor affirms the importance of context

April 20, 2018
In defining the cellular context of diffuse midline gliomas, researchers find the cells fueling their growth and suggest a potential approach to treating them: forcing their cells to be more mature.

Aggressive breast cancer already has resistant tumour cells prior to chemotherapy

April 20, 2018
Difficult to treat and aggressive "triple-negative" breast cancer is chemoresistant even before chemotherapy begins, a new study by researchers from Karolinska Institutet and the University of Texas MD Anderson Cancer Center ...

Mechanism that drives development of liver cancer brought on by non-alcoholic fatty liver disease discovered

April 19, 2018
A team of researchers from several institutions in China has found a mechanism that appears to drive the development of a type of liver cancer not caused by alcohol consumption. In their paper published in the journal Science ...

Discovery adds to evidence that some children are predisposed to develop leukemia

April 19, 2018
St. Jude Children's Research Hospital researchers have made a discovery that expands the list of genes to include when screening individuals for possible increased susceptibility to childhood leukemia. The finding is reported ...

Scientists identify 170 potential lung cancer drug targets using unique cellular library

April 19, 2018
After testing more than 200,000 chemical compounds, UT Southwestern's Simmons Cancer Center researchers have identified 170 chemicals that are potential candidates for development into drug therapies for lung cancer.

Chip-based blood test for multiple myeloma could make bone biopsies a relic of the past

April 19, 2018
The diagnosis and treatment of multiple myeloma, a cancer affecting plasma cells, traditionally forces patients to suffer through a painful bone biopsy. During that procedure, doctors insert a bone-biopsy needle through an ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.