The science, drugs and tech pushing our brains to new limits

October 6, 2016 by Barbara Sahakian
Credit: Jonathan Cohen/Flickr, CC BY-NC

A recent explosion of neuroscience techniques is driving substantial advances in our understanding of the brain. Combined with developments in engineering, machine learning and computing this flowering has helped us enhance our cognitive abilities and potential. In fact, new research into the extraordinary machine in our skulls is helping us keep pace with the rapid rise of artificial intelligence.

Exciting new advances are everywhere, but worth putting front and centre are findings made in the relatively new area of social neuroscience. Research by Molly Crockett at Oxford University has demonstrated how we might influence the social brain and examine the effects of neurotransmitters, such as serotonin, and hormones, such as oxytocin, on social cognition and social interactions. This includes the most fundamental aspects of our daily lives: trust, punishment, moral judgement, conformity and empathy.

Crockett and colleagues used experiments looking at cooperation, and moral dilemmas such as the "trolley problem" where participants must decide who to save from an onrushing railway cart (a similar puzzle was posed in the 2015 Helen Mirren film Eye in the Sky). Among their findings was evidence that serotonin increased an aversion to harming others. This clearly suggests that this brain chemical can promote positive social behaviour.

Recently developed computerised tests, such as EMOTICOM, which assesses a range of cognitive functions, will also make it easier to combine state-of-the-art neuroscience techniques with objective measurement of social and emotional concepts.

Shared knowledge

One amazing feat of combined neuroscience, engineering and computing was achieved by Edda Bilek, Andreas Myer-Lindenberg and colleagues from the Mannheim Central Institute of Mental Health in Germany. They invented a way to study information flow between human pairs during real-time social interaction, using functional magnetic resonance imaging (fMRI), which measures changes in blood flow in the brain. They were particularly interested in studying joint attention because it arises in early development and is important for social learning.

Their study allowed immersive, audio-visual interaction of two people in linked fMRI scanners, and identified the flow of information between the sender's and receiver's temporoparietal junction, a key brain region for social interaction. Not only did the study show that specific social brain systems are drivers of interaction in humans, it demonstrated the strength of integrated research across biological and physical sciences.

In future, this will allow us to study in real time the neural networks involved in other forms of joint , such as defeat, trust and mutual attraction.

Rapid development of these fMRI techniques, and of neuroimaging, will continue to transform the field of neuroscience. Experiments have tackled topics such as unconscious racial bias, "mind reading" and lying. It is work which helps to pull back the curtain on our understanding of the human mind – and might make us wonder if this glimpse into our thoughts crosses an ethical line in terms of privacy and profiling.

To see the power of fMRI techniques, look to the futuristic experiments by Jack Gallant and colleagues at the University of California. They have developed a method for reconstructing movie segments that a person is watching purely based on fMRI recordings, which track . More recently, the Gallant laboratory mapped the semantic atlas of the brain. These semantic networks are a sum of our verbal knowledge and how we understand the relationship between words and concepts.

The drugs might work

Outside of the lab and academia, there is an increasing use of so-called lifestyle drugs to enhance cognition, creativity and motivation in the workplace. Drugs such as modafinil, which has effects on noradrenaline, dopamine and GABA/glutamate in the brain, can boost cognitive functions, especially in flexibility of thinking and complex planning.

Such drugs are used to seek a competitive edge at university or work. The Care Quality Commission reported that over a six-year period from 2007 to 2013, there had been a 56% rise in prescriptions for methylphenidate in the UK. London City workers and traders use them to stay awake and alert for long periods of time. German workers use them in jobs where small mistakes might have large consequences. American academics travelling to international meetings use them to counteract jet lag.

Modafinil has been known to reduce accidents in shift workers, thereby increasing safety. In a similar fashion, aniracetam is used by Silicon Valley entrepreneurs to boost cognition. One of the original drugs in the same class is piracetam, which increases brain metabolism, while aniracetam has been shown to modulate the receptors in the brain that are thought to enhance cognition.

In parallel, there is a boom in demand for nootropics. These "microdosed" psychdedelics are increasingly a phenomenon in which small amounts of psilocybin mushrooms, LSD or mescaline are taken to enhance perception and creativity. Cognitive processes, including attention, learning and memory, have also been targeted through evidence-based games such as the brain training programme and the Wizard memory game developed by University of Cambridge and Peak. These academia-industry collaborations help to translate neuroscience discoveries into the real world.

AI, AI, Go

At present, the magnificent human brain is superior to artificial intelligence (AI). Computers have to dedicate themselves to playing chess or Go in order to beat us humans. In contrast, we can play chess or Go or perform many other activities and behaviours, often multi-tasking, and we can create new ideas and inventions. We are also social beings and our social and emotional cognition allows us to have "theory of mind". In other words we can understand and empathise with the thoughts and emotions of others.

However, with the rapid advances in machine learning and computing technology – including face and voice recognition – the potential for artificial intelligence may be limitless. By contrast, there will likely remain limits to the extent to which we can enhance human intelligence.

Nonetheless, the amazing achievements made by basic and clinical neuroscientists will not only help us understand the healthy brain but also improve brain health for everyone, including those with neuropsychiatric disorders, such as Alzheimer's disease, and brain injury.

Explore further: Brain representations of social thoughts accurately predict autism diagnosis

Related Stories

Brain representations of social thoughts accurately predict autism diagnosis

December 2, 2014
Psychiatric disorders—including autism—are characterized and diagnosed based on a clinical assessment of verbal and physical behavior. However, brain imaging and cognitive neuroscience are poised to provide a powerful ...

Evaluating animal threats and human intentions uses common brain network

May 13, 2016
Assessing whether a fluffy bunny or a giant spider poses a threat to our safety happens automatically. New research suggests the same brain areas may be involved in both detecting threats posed by animals and evaluating other ...

Fair play? How 'smart drugs' are making workplaces more competitive

July 1, 2016
We live in an increasingly competitive world where we are always looking to gain an advantage over our rivals, sometimes even our own colleagues. In some cases, it can push people to extreme, unethical and illegitimate methods ...

Similar brain connectivity during rest and tasks linked to better mental performance

August 16, 2016
A brain on task differs from a brain at rest. But, how much it differs could depend on the cognitive ability of the person whose brain is being studied. New research published August 17 in The Journal of Neuroscience suggests ...

Why 'smart drugs' can make you less clever

July 22, 2016
It is an open secret: while athletes dope their bodies, regular office workers dope their brains. They buy prescription drugs such as Ritalin or Provigil on the internet's flourishing black market to boost their cognitive ...

Key advance: Neuroscientists get a new look into how we read

April 7, 2016
Neuroscientists at UC Davis have come up with a way to observe brain activity during natural reading. It's the first time researchers have been able to study the brain while reading actual texts, instead of individual words, ...

Recommended for you

Brain training can improve our understanding of speech in noisy places

October 19, 2017
For many people with hearing challenges, trying to follow a conversation in a crowded restaurant or other noisy venue is a major struggle, even with hearing aids. Now researchers reporting in Current Biology on October 19th ...

Investigating the most common genetic contributor to Parkinson's disease

October 19, 2017
LRRK2 gene mutations are the most common genetic cause of Parkinson's disease (PD), but the normal physiological role of this gene in the brain remains unclear. In a paper published in Neuron, Brigham and Women's Hospital ...

Brain takes seconds to switch modes during tasks

October 19, 2017
The brain rapidly switches between operational modes in response to tasks and what is replayed can predict how well a task will be completed, according to a new UCL study in rats.

Researchers find shifting relationship between flexibility, modularity in the brain

October 19, 2017
A new study by Rice University researchers takes a step toward what they see as key to the advance of neuroscience: a better understanding of the relationship between the brain's flexibility and its modularity.

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Want to control your dreams? Here's how

October 19, 2017
New research at the University of Adelaide has found that a specific combination of techniques will increase people's chances of having lucid dreams, in which the dreamer is aware they're dreaming while it's still happening ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.