Cancer cells 'talk' to their environment, and it talks back

November 22, 2016
The above image shows the measurement of single-cell traction force using gel deformation and a fibrous nonlinear elastic model. Each arrow represents the discrete displacement of a fluorescent bead bonded to a collagen fiber. Credit: Matthew Hall/Provided

Interactions between an animal cell and its environment, a fibrous network called the extracellular matrix, play a critical role in cell function, including growth and migration. But less understood is the mechanical force that governs those interactions.

A multidisciplinary team of Cornell engineers and colleagues from the University of Pennsylvania have devised a method for measuring the a cell—in this case, a breast cancer cell—exerts on its fibrous surroundings. Understanding those forces has implications in many disciplines, including immunology and cancer biology, and could help scientists better design biomaterial scaffolds for tissue engineering.

The group, led by Mingming Wu, associate professor in the Department of Biological and Environmental Engineering, developed 3-D traction-force microscopy to measure the displacement of fluorescent marker beads distributed in a . The beads are displaced by the pulling of migrating embedded in the matrix. An important part of the puzzle was to calculate the force exerted by the cells using the displacement of the beads. That calculation was carried out by the team led by Vivek Shenoy, professor of materials science and engineering at the University of Pennsylvania.

The group's paper, "Fibrous nonlinear elasticity enables positive mechanical feedback between cells and extracellular matrices," published online Nov. 21 in Proceedings of the National Academy of Sciences. Matthew Hall, Ph.D. '16, now a postdoctoral researcher at the University of Michigan, is lead author and engineered the collagen matrices used in the study.

Wu—who also was affiliated with the Cornell Center on the Microenvironment and Metastasis at Weill Cornell Medicine, which existed from 2009 through 2015—said her group's work centered on a basic question: How much force do cells exert on their when they migrate?

"The matrix is like a rope, and in order for the cell to move, they have to exert force on this rope," she said. "The question arose from cancer metastasis, because if the cells don't move around, it's a benign tumor and generally not life-threatening."

It's when the cancerous cell migrates that serious problems can arise. That migration occurs through "cross-talk" between the cell and the matrix, the group found. As the cell pulls on the matrix, the fibrous matrix stiffens; in turn, the stiffening of the matrix causes the cell to pull harder, which stiffens the matrix even more.

This increased stiffening also increases cell force transmission distance, which can potentially promote metastasis of cancer cells.

"We've shown that the cells are able to align the fibers in their vicinity by exerting force," Hall said. "We've also shown that when the matrix is more fibrous - less like a continuous material and more like a mesh of fibers - they're able to align the fibers through the production of force. And once the fiber is aligned and taut, it's easier for to pull on them and migrate."

"I'm a strong believer that every new science discovery goes hand-in-hand with new technology development," she said. "And with every new tool, you discover something new."

Explore further: Cancer cell collaborators smooth the way for cancer cells to metastasize

More information: Matthew S. Hall et al, Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs, Proceedings of the National Academy of Sciences (2016). DOI: 10.1073/pnas.1613058113

Related Stories

Cancer cell collaborators smooth the way for cancer cells to metastasize

December 13, 2015
At ASCB 2015, Vanderbilt researchers show how metastasizing tumors use non-cancerous fibroblasts to make a migration highway through surrounding extracellular matrix.

ROBO1 helps cells put up stiff resistance

March 14, 2016
A protein called ROBO1 may delay the progression of breast cancer, according to a paper published in The Journal of Cell Biology. The study, "Loss of miR-203 regulates cell shape and matrix adhesion through ROBO1/Rac/FAK ...

Three-dimensional model sheds light into the synergy between cell microenvironment and cancer stem cells

May 6, 2016
The fight against deadly forms of brain cancer, such as glioblastoma, could soon benefit from a major breakthrough, thanks to A*STAR researchers. The team has found a new link between cancer cell growth and its microenvironment.

Recommended for you

Researchers discover specific tumor environment that triggers cells to metastasize

November 21, 2017
A team of bioengineers and bioinformaticians at the University of California San Diego have discovered how the environment surrounding a tumor can trigger metastatic behavior in cancer cells. Specifically, when tumor cells ...

New study points the way to therapy for rare cancer that targets the young

November 21, 2017
After years of rigorous research, a team of scientists has identified the genetic engine that drives a rare form of liver cancer. The findings offer prime targets for drugs to treat the usually lethal disease, fibrolamellar ...

Clinical trial suggests new cell therapy for relapsed leukemia patients

November 20, 2017
A significant proportion of children and young adults with treatment-resistant B-cell leukemia who participated in a small study achieved remission with the help of a new form of gene therapy, according to researchers at ...

Cell-weighing method could help doctors choose cancer drugs

November 20, 2017
Doctors have many drugs available to treat multiple myeloma, a type of blood cancer. However, there is no way to predict, by genetic markers or other means, how a patient will respond to a particular drug. This can lead to ...

Researchers discover a new target for 'triple-negative' breast cancer

November 20, 2017
So-called "triple-negative" breast cancer is a particularly aggressive and difficult-to-treat form. It accounts for only about 10 percent of breast cancer cases, but is responsible for about 25 percent of breast cancer fatalities.

Study reveals new mechanism used by cancer cells to disarm attacking immune cells

November 20, 2017
A new study by researchers at The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute (OSUCCC - James) identifies a substance released by pancreatic cancer cells that protects ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.