Genes for speech may not be limited to humans

November 15, 2016
A depiction of the double helical structure of DNA. Its four coding units (A, T, C, G) are color-coded in pink, orange, purple and yellow. Credit: NHGRI

Our current understanding is that mice have either no—or extremely limited—neural circuitry and genes similar to those that regulate human speech. According to a recent study published in Frontiers in Behavioral Neuroscience, this understanding may be incorrect.

Dr. Jonathan Chabout is the lead author of the paper, whose principal investigator is Dr. Erich Jarvis.

Dr. Jarvis and colleagues report the results of their investigation into the effect of a genetic mutation in the Forkhead box protein #2 (FOXP2) on the vocalization patterns of adult male . FOXP2 regulates speech production in humans. Individuals with deficiencies in FOXP2 protein have difficulty forming complex syllables and complex sentence construction.

Although mice are unable to communicate using speech in the same way as humans, they do vocalize as a means of communicating with each other. Therefore this study sought to determine whether FOXP2 deficiencies have similar consequences for communication by mice as they do for humans.

They do.

Dr. Jarvis suggests that this study supports the "continuum hypothesis," which is that FOXP2 affects the vocal production of all mammals and not just humans.

Dr. Jarvis' team investigated twenty-six (26) male mice bred to have a FOXP2 mutation the same as that found in humans with speech deficits, and twenty-four (24) "wildtype" male mice (i.e., mice with a normal level of FOXP2 protein).

Both types of male mice (the heterozygous mice containing the FOXP2 mutation and the wildtype mice) were placed in several unique contexts—housed with an active wildtype female mouse, in proximity of only the urine of wildtype females, or housed with a sleeping female or sleeping male mouse. These particular contexts derived from prior research published by Chabout and colleagues in 2015.

This past study found that in these various social contexts, healthy males produced differences in the sequence and duration of the ultrasonic vocalizations (USVs), which are high-pitched sounds inaudible to humans, that mice make. In their new study, the investigators wished to determine if there was an effect of a FOXP2 deficiency on the communication patterns of mice.

The results showed that the FOXP2 heterozygotes have difficulty producing the complex vocal communication patterns that wildtype mice can create with ease—as measured both by syllable length and the number of unique syllables produced over time. These divergences are particularly strong when comparing the communication of FOXP2 heterozygotes and wildtype males while in the presence of active female mice. In this context, the wildtype males were 3 times as likely as heterozygotes to produce the most complex syllable types and sequences available for review. Dr. Jarvis' team performed intricate statistical analyses to validate this finding, and their conclusion held true.

Following the conclusion of all recordings, Dr. Jarvis' team used a process known as transsynaptic tracing from vocal larynx muscles to compare the vocal brain regions of wildtype and heterozygote FOXP2 mice. This study revealed that the heterozygote's vocal motor neurons were more widely distributed across the cortex than was the case for wildtype mice. This evidence suggests that the FOXP2 mutation affects both the placement and functioning of the neurons connected to effective communication, from mice all the way to humans.

Prior research has shown a more limited role for FOXP2 than what is now becoming apparent. As Dr. Jarvis observes, "We believe that FOXP2 already had a pre-existing role in regulating vocal communication before language evolved."

Explore further: Language protein differs in males, females

More information: Jonathan Chabout et al, A Foxp2 Mutation Implicated in Human Speech Deficits Alters Sequencing of Ultrasonic Vocalizations in Adult Male Mice, Frontiers in Behavioral Neuroscience (2016). DOI: 10.3389/fnbeh.2016.00197

Related Stories

Language protein differs in males, females

February 19, 2013
Male rat pups have more of a specific brain protein associated with language development than females, according to a study published February 20 in The Journal of Neuroscience. The study also found sex differences in the ...

Bird study finds key info about human speech-language development

October 17, 2013
A study led by Xiaoching Li, PhD, at the LSU Health Sciences Center New Orleans Neuroscience Center of Excellence, has shown for the first time how two tiny molecules regulate a gene implicated in speech and language impairments ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.