Researchers identify protein required for breast cancer metastasis

November 15, 2016
breast cancer
Mammograms showing a normal breast (left) and a breast with cancer (right). Credit: Public Domain

Researchers have identified a new pathway and with it a protein, BRD4, necessary for breast cancer cells to spread.

The findings, which appear in the journal Cancer Research, may provide a new target to suppress breast cancer .

Triple-negative breast cancer is considered the worst subgroup of breast cancer. It is highly aggressive and responds poorly to the current therapeutic tools resulting in a dismal prognosis for patients. Furthermore, the lack of identified targets has limited the development of new drug strategies.

Researchers from Boston University School of Medicine (BUSM) used breast cancer that present the clinical characteristics of an aggressive breast cancer subtype (clinically described as a ). They then used an experimental design to model cancer cell metastasis. By suppressing the expression of the protein BRD4 in these cell lines, they observed that their dissemination capabilities were blocked, indicating that BRD4 drives breast cancer dissemination. In addition, they conducted a screening analysis of human breast tumors and found that tumors with a high expression of BRD4 were more likely to metastasize.

"The current treatment options for a triple-negative cancer are unacceptably limited. It is crucial to identify new therapeutic targets to tackle challenging cancer types, including triple negative breast cancer. BDR4 targeting represents an innovative strategy to ablate ," explained lead investigator Guillaume Andrieu, PhD, a post-doctoral research associate at Boston University School of Medicine.

Although obesity per se is not thought of as a carcinogen, the abnormal, inflamed microenvironments found in obesity are critical for progression, invasion and metastasis of triple negative breast cancer. "Bromodomain and ExtraTerminal domain (BET) proteins, which include BRD2, BRD3 and BRD4, are known to regulate production of inflammatory mediators. Our study proposes that BRD4 couples inflammation to breast cancer dissemination. Thus, small molecules that block BET proteins possess anti-inflammatory properties that can be useful for therapy," he added.

Although these findings primarily focus on and metastasis, the researchers plan to expand their results to the treatment of prostate cancer, which they believe has similar pathways involved in its metastasis.

Explore further: Discovery of potential treatment for aggressive form of breast cancer

Related Stories

Discovery of potential treatment for aggressive form of breast cancer

November 2, 2016
A new drug could be used to treat one of the most aggressive forms of breast cancer, a research centre based at University College Dublin and St Vincent's Hospital has discovered.

Promising findings towards targeted breast cancer therapy

November 14, 2016
New research led by Conway Fellow, Professor Joe Duffy and Professor John Crown in St Vincent's University Hospital has reported for the first time on a new treatment that could be used in the majority of patients with triple ...

New compound shows potential for triple-negative breast cancer

June 8, 2016
Researchers at the University of Michigan have identified a promising new compound for targeting one of the most aggressive types of breast cancer.

New study shows potential for targeting aggressive breast cancers

February 11, 2014
A new study led by University of Kentucky Markey Cancer Center researcher Peter Zhou shows that targeting Twist, a nuclear protein that is an accelerant of the epithelial-mesenchymal transition (EMT) program in human cells, ...

Researchers identify novel treatment for aggressive form of breast cancer

May 23, 2016
A recent study by researchers at Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine revealed that triple-negative breast cancer (TNBC), which has generally been unresponsive to hormone ...

Even low-androgen triple-negative breast cancer responds to anti-androgen therapy

February 24, 2015
A University of Colorado Cancer Center study published today in the journal Molecular Cancer Therapeutics shows that only about 1 percent of triple-negative breast cancer cells in a tumor must be "androgen-receptor-positive" ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.