Alzheimer's: Proteomics gives clues toward alternatives to amyloid

December 15, 2016, Emory University
Diagram of the brain of a person with Alzheimer's Disease. Credit: Wikipedia/public domain.

In Alzheimer's research, one particular protein looms large: plaque-forming amyloid-beta. Yet doctors now recognize that plaques can accumulate decades before symptoms appear. Recent clinical trials aimed at controlling or removing amyloid-beta have largely been disappointing.

Proteomics—analyzing in an "unbiased" way how all the proteins in the brain accumulate or disappear—could provide clues to alternative mechanisms and even treatment strategies, scientists think.

Researchers at Emory University School of Medicine have performed the first large-scale analysis of post-mortem brain proteins in Alzheimer's, using systems biology tools previously reserved for gene expression data.

Comparing samples from Alzheimer's patients with those from healthy elderly controls and patients with other neurodegenerative diseases, the team identified networks of changing proteins that were specific to Alzheimer's. Putting together protein and gene data, the scientists saw patterns pointing to the importance of inflammation and certain cell types, such as microglia, the brain's scavenger immune cells, which gobble up amyloid plaques.

The results are scheduled for publication in Cell Systems on Dec. 15.

"Our findings make a significant contribution towards understanding the earliest molecular changes at the protein level in human brain, which are linked to Alzheimer's pathogenesis and cognitive decline," says co-lead author Nicholas Seyfried, PhD, assistant professor of biochemistry and neurology at Emory University School of Medicine and director of the Emory Integrated Proteomics Core.

This paper is the first proteomics study emerging from the Accelerating Medicines Partnership for Alzheimer's Disease, a $92 million collaboration between the National Institutes of Health and major pharmaceutical companies.

"The purpose of this project is to employ large-scale unbiased discovery approaches using postmortem human brains to identify changes in protein networks that are most closely linked to cognition and the hallmark neuropathology, especially those changes that occur in the earliest, preclinical stages of disease," says Allan Levey, MD, PhD, chair of neurology at Emory University School of Medicine and director of Emory's Alzheimer's Disease Research Center.

Emory investigators collaborated with the Baltimore Longitudinal Study of Aging, (BLSA), which provided brain tissue from people diagnosed with Alzheimer's disease (AD) and healthy elderly controls, as well as those defined as having "asymptomatic AD"; that is, people with normal cognition, but who at death had pathological signs of AD, including amyloid-beta plaques. By looking at this unique set of brains, researchers could tease out protein signatures involved in preclinical versus symptomatic disease states.

"It's been known for some time that many older people have amyloid buildup without having symptoms of Alzheimer's," Levey says. "This group is particularly important, because this is includes people in the preclinical stages of the disease who likely have developed symptoms if they had lived longer, and thus represents the first stages of disease progression. However, it could also include people who have a cognitive reserve, or have some biological mechanisms of resilience against the negative effects of amyloid."

For almost all of the BLSA cases, comprising 97 individual samples, two regions of the brain's cortex were examined. In addition, the team validated their findings by comparing them against 32 samples from the Emory ADRC brain bank, which included healthy controls and those with AD, Parkinson's disease and ALS (amyotrophic lateral sclerosis). This allowed the team to identify early protein changes in the preclinical stage of AD, as well as those that were AD-specific.

The investigators also compared their findings with previously published data on gene expression (RNA, which shows how genes are turned on and off) in Alzheimer's. While the gene activity data were reflected in the protein modules, most modules altered in Alzheimer's proteins were not seen in the gene data. These included modules associated with microtubule function, RNA/DNA binding, and inflammation.

Some of the "protein-only" modules were enriched with blood proteins that were likely deposited in the brain following breakdown of the blood-brain barrier, the authors write. They also speculate that discrepancies between RNA and could come from a spatial mismatch between cell bodies (where the genes are) and degenerating axons where proteins are supposed to be produced.

By mapping known genetic risk factors for late onset AD onto both the protein and RNA networks, the scientists saw patterns pointing to the importance of microglia and oligodendrocytes, cells of the brain that produce insulating myelin sheaths around neuronal axons. In contrast, similar analyses using for autism spectrum disorder and schizophrenia emphasized neuronal rather than glial biology.

"At the systems level, we see a convergence in both the transcriptome and proteome on networks associated with inflammation and glial cells, further highlighting the importance of non-neuronal drivers in Alzheimer's pathogenesis," Seyfried says.

The researchers are now seeking to move their findings into the clinic. Some of the signature proteins seen in AD brain have been previously detected in blood plasma or CSF (cerebrospinal fluid), and could serve as excellent candidate biomarkers, Seyfried says. Measuring these markers in patients' blood or CSF could provide the basis for tests that would help doctors diagnose or even predict AD before the onset of symptoms.

In addition, the proteomics data generated by the Emory team is being used to validate and prioritize new targets and mechanisms in the Accelerating Medicines Partnership consortium. The Emory team is expanding the project to include thousands of new study participants, using more advanced mass spectrometry techniques.

Explore further: 'Pac-Man' gene implicated in Alzheimer's disease

Related Stories

'Pac-Man' gene implicated in Alzheimer's disease

July 26, 2016
A gene that protects the brain from the harmful build-up of amyloid-beta, one of the causative proteins implicated in Alzheimer's disease, has been identified as a new target for therapy by NeuRA researchers.

Alzheimer's: Newly identified protein pathology impairs RNA splicing

September 10, 2013
Move over, plaques and tangles.

New approaches to understanding Alzheimer's and Parkinson's disease

July 26, 2016
In a study presented today at the Alzheimer's Association International Conference 2016, researchers at the Douglas Mental Health University Institute have explored how some people may develop the hallmarks of Alzheimer's ...

Three Alzheimer's genetic risk factors linked to immune cell dysfunction

July 20, 2016
People with a variant copy of the TREM2 gene have an increased risk of developing Alzheimer's disease, but researchers are only beginning to understand why.

Immune cells may protect against Alzheimer's

May 19, 2016
Clusters of immune cells in the brain previously associated with Alzheimer's actually protect against the disease by containing the spread of damaging amyloid plaques, a new Yale University School of Medicine study shows.

A new biomarker of brain inflammation in early-stage Alzheimer's disease

March 3, 2016
Researchers at the Ludwig-Maximilians-University, the German Center for Neurodegenerative Diseases (DZNE), and the Institute for Stroke and Dementia Research (ISD) in Munich, Germany, have identified a brain inflammation ...

Recommended for you

Alzheimer's disease: Neuronal loss very limited

January 17, 2018
Frequently encountered in the elderly, Alzheimer's is considered a neurodegenerative disease, which means that it is accompanied by a significant, progressive loss of neurons and their nerve endings, or synapses. A joint ...

Anxiety: An early indicator of Alzheimer's disease?

January 12, 2018
A new study suggests an association between elevated amyloid beta levels and the worsening of anxiety symptoms. The findings support the hypothesis that neuropsychiatric symptoms could represent the early manifestation of ...

One of the most promising drugs for Alzheimer's disease fails in clinical trials

January 11, 2018
To the roughly 400 clinical trials that have tested some experimental treatment for Alzheimer's disease and come up short, we can now add three more.

Different disease types associated with distinct amyloid-beta prion strains found in Alzheimer's patients

January 9, 2018
An international team of researchers has found different disease type associations with distinct amyloid-beta prion strains in the brains of dead Alzheimer's patients. In their paper published in Proceedings of the National ...

Advances in brain imaging settle debate over spread of key protein in Alzheimer's

January 5, 2018
Recent advances in brain imaging have enabled scientists to show for the first time that a key protein which causes nerve cell death spreads throughout the brain in Alzheimer's disease - and hence that blocking its spread ...

Molecular mechanism behind HIV-associated dementia revealed

January 5, 2018
For the first time, scientists have identified and inhibited a molecular process that can lead to neurodegeneration in patients with HIV, according to a Northwestern Medicine study published in Nature Communications.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.