Researchers find the incident commander in the brain's defence system

December 8, 2016
Researchers are close to finding the mechanisms in the brain that contribute to tissue damage. Credit: Line Reinert

Imagine seeing a building on fire. You grab the phone and call the fire service. What happens next can be compared to the discovery made by researchers from Aarhus University. They have discovered that a specific type of cell in the brain, microglia, acts as the incident commander in the defence against the invading virus, for example a herpes virus.

In cases of viral infection in the brain, this cell type coordinates reinforcements. It recruits additional microglia to the area, which in turn warns the neighbouring that something dangerous is happening. These cells are called astroglia and neurons.

After this, the 'fire' is put out, and 'medical help' is called in via proteins, so the cells that have been injured or killed can be removed.

"Viruses which travel via into the brain are recognised by several types of cells, though not all cells are able to defend themselves against the infection. But microglia can, and through an alarm system (cGAS/STING), they are able to initiate a very strong immune reaction and suppress the virus," explains one of the researchers behind the discovery, Line Reinert from the Department of Biomedicine at Aarhus University.

The results have just been published in Nature Communications, and on the basis of the new knowledge the researchers hope to be able to contribute to new and better treatment of brain diseases such as multiple sclerosis, Alzheimer's disease and potentially also psychiatric disorders.

"We have identified and described a communication network that begins in the brain, when the cGAS/STING alarm system is activated. This new knowledge can potentially be utilised to prevent other types of diseases of the brain, where the same is either not activated or is activated too much," says Line Reinert.

The next step is to look at how damage to the brain occurs during infections and other diseases, and examine which mechanisms the brain uses to find the balance between the good and harmful aspects of the immune system.

"The brain is an organ which cannot withstand much damage. So it must therefore have, on the one hand, defence mechanisms against infections and, on the other hand, not utilise these too strongly. If microglia are activated too much, they do not only suppress the virus, but also damage some of the tissue. We are now working to understand this," says Søren Riis Paludan, who has led the project group, which has also involved other research groups from Denmark and abroad.

Explore further: Study explains mechanisms behind glioblastoma influence on the immune system

More information: Line S. Reinert et al, Sensing of HSV-1 by the cGAS–STING pathway in microglia orchestrates antiviral defence in the CNS, Nature Communications (2016). DOI: 10.1038/ncomms13348

Related Stories

Study explains mechanisms behind glioblastoma influence on the immune system

September 12, 2016
Glioblastomas exert an influence on the microglia, immune cells of the brain, which causes them to stimulate cancer growth rather than attacking it. In a study published in the journal Nature Immunology, an international ...

Breakthrough in understanding of brain development: Immune cell involvement revealed

August 25, 2016
Microglia are cells that combat various brain diseases and injuries by swallowing foreign or disruptive objects and releasing molecules that activate repair mechanisms. Recent findings have suggested these brain cells are ...

Experimental drug shows promise in treating Alzheimer's disease

October 25, 2016
An experimental drug shows promise in treating Alzheimer's disease by preventing inflammation and removing abnormal protein clumps in the brain that are associated with the disease, suggests a study in mice presented at the ...

Researchers discover neuroprotective role of immune cell

July 22, 2014
A type of immune cell widely believed to exacerbate chronic adult brain diseases, such as Alzheimer's disease and multiple sclerosis (MS), can actually protect the brain from traumatic brain injury (TBI) and may slow the ...

Seasonal allergies could change your brain

August 8, 2016
Hay fever may do more than give you a stuffy nose and itchy eyes, seasonal allergies may change the brain, says a study published in the open-access journal Frontiers in Cellular Neuroscience.

New discovery: This is why we do not constantly get ill despite viruses and bacteria

December 1, 2015
New research breaks with existing knowledge about how our immune system works. Experiments at Aarhus University have shown how the body mobilises a hitherto unknown defence against viruses and bacteria. This also explains ...

Recommended for you

Our memory shifts into high gear when we think about raising our children, new study shows

December 15, 2017
Human memory has evolved so people better recall events encountered while they are thinking about raising their offspring, according to a new study conducted by researchers at Binghamton University, State University of New ...

Offbeat brain rhythms during sleep make older adults forget

December 15, 2017
Like swinging a tennis racket during a ball toss to serve an ace, slow and speedy brainwaves during deep sleep must sync up at exactly the right moment to hit the save button on new memories, according to new UC Berkeley ...

Study finds graspable objects grab attention more than images of objects do

December 15, 2017
Does having the potential to act upon an object have a unique influence on behavior and brain responses to the object? That is the question Jacqueline Snow, assistant professor of psychology at the University of Nevada, Reno, ...

Little understood cell helps mice see color

December 14, 2017
Researchers at the University of Colorado Anschutz Medical Campus have discovered that color vision in mice is far more complex than originally thought, opening the door to experiments that could potentially lead to new treatments ...

Scientists chart how brain signals connect to neurons

December 14, 2017
Scientists at Johns Hopkins have used supercomputers to create an atomic scale map that tracks how the signaling chemical glutamate binds to a neuron in the brain. The findings, say the scientists, shed light on the dynamic ...

Journaling inspires altruism through an attitude of gratitude

December 14, 2017
Gratitude does more than help maintain good health. New research at the University of Oregon finds that regularly noting feelings of gratitude in a journal leads to increased altruism.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.