Key regulator of bone development identified

December 8, 2016 by Sam Sholtis, Pennsylvania State University
Phenotype: Knocking out the Spop protein in developing mouse limb leads to brachydactyly, a shortening of the fingers and toes (left) and reduced bone density (right). Credit: Liu Laboratory, Penn State

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State University who knocked out the Speckle-type POZ Protein (Spop) in the mouse and characterized the impact on bone development. The research, which appears online in the journal Proceedings of the National Academy of Sciences on Dec. 5, redefines the role of Spop during bone development and provides a new potential target for the diagnosis and treatment of bone diseases such as osteoporosis.

"The Spop protein is involved in Hedgehog signaling—a well-studied cell-to-cell communication pathway that plays multiple roles during development," said Aimin Liu, associate professor of biology at Penn State and the corresponding author of the study. "Previous studies done in cell culture suggested that Spop negatively regulates or 'turns down' Hedgehog signaling. However, in our study, we show that Spop positively regulates the pathway downstream of a member of the Hedgehog family, a protein called Indian Hedgehog, during bone development. This new understanding adds to our knowledge of the genetic basis of bone development and could open new avenues to study ."

Indian Hedgehog (Ihh) plays an essential role in bone development. It is near the top of a hierarchical cascade of genes that program cells to produce cartilage and bone. Ihh controls by regulating the activity of the transcription factors—proteins that control the expression of other genes—Gli2 and Gli3. Gli2 acts mainly as an activator of gene expression and Gli3 acts mainly to repress gene expression. The Spop protein tags the Gli proteins to be degraded in the cell.

Key regulator of bone development identified
Schematic of Hedgehog (Hh) signaling in a cell. Receptors on the cell surface (Ptc) detect Hh, initiating a signaling cascade that regulates the Gli transcription factors (GliA, GliR), which in turn control expression of other genes needed for bone development. Knocking out Spop (not pictured), which is responsible for degrading the Gli proteins, results in a build up of the repressive form of Gli (GliR) and an overall decrease in Hh signaling. Credit: Liu Laboratory, Penn State University

"Previous studies led to a hypothesis that a loss of Spop function would increase Hedgehog signaling because the Gli activators were no longer being degraded," said Hongchen Cai, a graduate student at Penn State and an author of the paper. "We were surprised to see in our study the repressor of gene expression, Gli3, built up in developing bone, but not the activator of gene expression, Gli2. This imbalance led to an overall decrease in Hedgehog signaling."

In order to study the role of Spop in more closely, the researchers knocked the gene out specifically in the limb. Limbs that lacked Spop had less dense bone, mimicking osteopenia—a human condition characterized by low , but not as severe as osteoporosis. The limbs also had shorter than normal fingers and toes. The researchers also showed that the effects of losing Spop could be mitigated by simultaneously reducing the amount of Gli3 in the limbs.

Explore further: Scientists find cause of facial widening defects

More information: Hongchen Cai et al. Spop promotes skeletal development and homeostasis by positively regulating Ihh signaling, Proceedings of the National Academy of Sciences (2016). DOI: 10.1073/pnas.1612520114

Related Stories

Scientists find cause of facial widening defects

November 1, 2016
Widening across the forehead and nose occurs when loss of cilia at the surface of the cells disrupts internal signaling and causes two GLI proteins to stop repressing midfacial growth. Ching-Fang Chang and Samantha Brugmann ...

Scientists show how frequently mutated prostate cancer gene suppresses tumors

October 29, 2015
The gene SPOP is mutated in up to 15 percent of all cases of prostate cancer, making it one of the most mutated genes in the disease. However, when the gene is functioning properly, it acts as a tumor suppressor. Despite ...

Taste bud maintenance in mice requires Hedgehog signaling

November 28, 2016
Disruptions in the Hedgehog signaling pathway can interfere with taste bud maintenance in mice, potentially explaining why some cancer patients experience a loss of taste during treatment with Hedgehog-blocking drugs. Charlotte ...

Loss of tumor suppressor SPOP releases cancer potential of SRC-3

April 1, 2013
Mutations in a protein called SPOP (speckle-type POZ protein) disarm it, allowing another protein called steroid receptor coactivator-3 (SRC-3) to encourage the proliferation and spread of prostate cancer cells, said researchers ...

Signaling pathway could be key to improved osteoporosis treatment

October 19, 2016
A molecular signaling pathway identified by an international research team could be the basis of improved treatment for osteoporosis. In their report published in the online journal Nature Communications, the investigators ...

Active hedgehog signalling in connective tissue cells protects against colon cancer

August 8, 2016
Many types of cancer are caused by gene mutations in the signalling pathways that control cell growth, such as the hedgehog signalling pathway. A new study from the Karolinska Institutet, published in the journal Nature Communications, ...

Recommended for you

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.