Metabolite that promotes cancer cell transformation and colorectal cancer spread identified

December 1, 2016
The production of oncometabolite (D-2HG) from glutamine results in invasion of cancer cells into the blood stream and spread to distant organs. Credit: Osaka University

Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial–mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread. The finding highlights the value of targeting D-2HG to establish new therapeutic approaches against colorectal cancer.

A metabolite is found to make the colorectal more invasive and increase likelihood of more tumors spreading to distant organs; this makes the metabolite a promising target for future cancer therapies.

Osaka, Japan – Cancer cells exhibit a range of properties that diverge from those of their normal healthy counterparts, including levels of various metabolites. However, it has been difficult to determine whether such altered levels is a cause or a consequence of the cancerous growth.

In a breakthrough that offers hope for improved treatment of , Osaka University researchers have identified a metabolite that causes cancer cells to develop more dangerous properties and increases the likelihood that cancer will spread in colorectal cancer patients.

The team examined different varieties of cancer cells and cells from normal tissues and revealed high levels of D-2-hydroxyglutarate (D-2HG) in colorectal cancer cells. They then administered either D-2HG into cancer cells and found it induced the cells to undergo transformation. This transformation involved the cells adhering less strongly to each other and migrating more easily. These properties in the body are associated with cancer progression and spread.

"When we grew the cells with D-2HG on plates and measured their movement, they migrated further than " lead author Hugh Colvin says. "Using a Matrigel assay that models the ability of cancer cells to enter local tissue, the D-2HG treated cells were also more invasive."

The researchers showed that D-2HG acts by increasing the expression of a gene called ZEB1, which promotes this cell transformation. They also obtained specimens from 28 human colorectal cancer patients and divided them into two groups with low or high levels of D-2HG. The patients' records showed that the high group had more often suffered cancer spread to distant organs, which suggested the importance of D-2HG in patient prognosis.

"When cancer cells initially emerge, it can be difficult for them to survive and multiply because of the local conditions," coauthor Hideshi Ishii says. "D-2HG makes cancer cell survival more likely by causing them to transform from epithelial to , meaning that they can invade local tissue, enter the blood, and be transported elsewhere to establish a new tumor."

With the importance of this molecule in cancer progression and prognosis revealed, it can be focused on as a promising target for colorectal cancer treatments.

Explore further: Gene thought to suppress cancer may actually promote spread of colorectal cancer

More information: Hugh Colvin et al. Oncometabolite D-2-Hydroxyglurate Directly Induces Epithelial-Mesenchymal Transition and is Associated with Distant Metastasis in Colorectal Cancer, Scientific Reports (2016). DOI: 10.1038/srep36289

Related Stories

Colon cancer: Taking a step back to move forward

June 30, 2015

Recent Weizmann Institute studies are revealing a complex picture of cancer progression in which certain genes that drive tumor growth in the earlier stages get suppressed in later stages - taking a step back to move forward. ...

Recommended for you

Ancient stress response provides clues to cancer resistance

April 25, 2017

Cancer is often able to craftily outwit the best techniques modern medicine has developed to treat it. In an attempt to understand and combat cancer's vaunted prowess, an unusual collaboration between physicists and a leading ...

Studying a catalyst for blood cancers

April 25, 2017

Imagine this scenario on a highway: A driver starts to make a sudden lane change but realizes his mistake and quickly veers back, too late. Other motorists have already reacted and, in some cases, collide. Meanwhile, the ...

Savior of T-cells may be enemy of liver immune cells

April 24, 2017

Researchers at Houston Methodist demonstrated that a surface protein called OX40, responsible for keeping one type of immune system cell alive, can trigger the death of liver immune cells, in turn starting a chain reaction ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.