Researchers find a potential target for anti-Alzheimer treatments

January 11, 2017
Credit: Université du Luxembourg

Scientists at the Luxembourg Centre for Systems Biomedicine (LCSB) of the University of Luxembourg have identified a gene that may provide a new starting point for developing treatments for Alzheimer's disease (AD). The USP9 gene has an indirect influence on the so-called tau protein, which is believed to play a significant role in the onset of Alzheimer's disease. This discovery by the LCSB researchers, led by Dr. Enrico Glaab, may open a new door to developing active ingredients to treat Alzheimer's disease. The scientists recently published their findings in the journal Molecular Neurobiology.

Alzheimer's is characterised by the progressive destruction of brain cells and their contacts (neurons and synapses). The brains of Alzheimer patients exhibit protein deposits known as amyloid plaques. The symptoms of the disease are memory disorders, disorientation, speech impediments, impaired thinking and judgement, and even personality changes. The likelihood of developing AD increases dramatically with age. The number of people affected is therefore rising along with our increasing : An estimated 35 million people in the world have Alzheimer's disease today. By 2030, this number could rise to about 65 million, and by 2050 to over 100 million. It has never been fully explained how the disease develops. It is likely, however, that molecular malformations in brain cells play a crucial role, involving among other molecules the so-called tau proteins. In Alzheimer's patients, tau proteins aggregate into tangles of threadlike structures, called neurofibrils, which deposit between the and disrupt their function.

"The risk of developing Alzheimer's disease at an advanced age is much higher in women than in men – even after adjusting for the longer of women," says Dr. Enrico Glaab, head of the research group Biomedical Data Science at LCSB. Glaab took this as a hint to start looking for molecular differences between the sexes that could contribute to the differences in frequency and characteristics of the disease. To do so, he and his team analysed thousands of data series on samples from the brains of around 650 deceased people of both sexes, some of whom had been afflicted with the disease and others who had not.

The researchers encountered a gene that could be an important determinant for the gender-specific differences in Alzheimer's disease pathology. The gene, called ubiquitin-specific peptidase 9 (USP9), influences the activity of another gene that encodes the microtubule associated protein tau (MAPT). MAPT, in turn, is already suspected of being heavily involved in the onset of Alzheimer's disease.

To study the action of USP9, and the relationship between its role and the role of tau in Alzheimer's disease, Enrico Glaab and colleagues from other LCSB workgroups examined the gene in cell cultures and zebrafish experiments. The scientists blocked the activity of USP9 and measured the effects of this "knockdown" on MAPT gene activity in the two model systems of cell cultures and zebrafish.

"We were able to show that USP9 knockdown significantly reduces the activity of the tau gene in both models," Glaab reports. Accordingly, USP9 could serve as a target for future tau-modulating small molecule compounds – even if there is still a long way to go before anti-Alzheimer's drugs based on this principle can be developed.

To gain a deeper understanding of the molecular signal chain connecting USP9 and MAPT, the researchers at LCSB developed a computer model that combines the measured data with known regulatory information from the literature. They discovered that proteins that had already been suggested as potential drug targets are also influenced by USP9. Through parallel alteration of multiple tau regulators, USP9 could therefore have a greater effect as a pharmaceutical target than previously proposed targets.

Explore further: 'Pac-Man' gene implicated in Alzheimer's disease

More information: Sandra Köglsberger et al. Gender-Specific Expression of Ubiquitin-Specific Peptidase 9 Modulates Tau Expression and Phosphorylation: Possible Implications for Tauopathies, Molecular Neurobiology (2016). DOI: 10.1007/s12035-016-0299-z

Related Stories

'Pac-Man' gene implicated in Alzheimer's disease

July 26, 2016
A gene that protects the brain from the harmful build-up of amyloid-beta, one of the causative proteins implicated in Alzheimer's disease, has been identified as a new target for therapy by NeuRA researchers.

Abnormal brain protein may contribute to Alzheimer's disease development

September 30, 2016
A recently-recognized pathologic protein in the brain may play a larger role in the development of clinical Alzheimer's disease dementia than previously recognized, according to a study by researchers at Rush University Medical ...

Glaucoma drug may have potential to treat Alzheimer's disease

December 9, 2016
A drug which is used to treat the common eye disease glaucoma may have potential as a treatment for Alzheimer's disease, according to scientists at UCL.

Newly identified rare Alzheimer's disease gene mutation more common in Icelandic people

October 20, 2016
People with Icelandic heritage are more likely to carry a novel rare mutation in the TM2D3 gene, which leads to greater risk for Alzheimer's disease, based on a new study published October 14th, 2016 in PLOS Genetics by Johanna ...

New approaches to understanding Alzheimer's and Parkinson's disease

July 26, 2016
In a study presented today at the Alzheimer's Association International Conference 2016, researchers at the Douglas Mental Health University Institute have explored how some people may develop the hallmarks of Alzheimer's ...

Tau-associated MAPT gene increases risk for Alzheimer's disease

February 18, 2015
An international team of scientists, led by researchers at the University of California, San Diego School of Medicine, has identified the microtubule-associated protein tau (MAPT) gene as increasing the risk for developing ...

Recommended for you

Lifestyle changes to stave off Alzheimer's? Hints, no proof

July 20, 2017
There are no proven ways to stave off Alzheimer's, but a new report raises the prospect that avoiding nine key risks starting in childhood just might delay or even prevent about a third of dementia cases around the world.

Blood test identifies key Alzheimer's marker

July 19, 2017
A new study led by researchers at Washington University School of Medicine in St. Louis suggests that measures of amyloid beta in the blood have the potential to help identify people with altered levels of amyloid in their ...

Steering an enzyme's 'scissors' shows potential for stopping Alzheimer's disease

July 19, 2017
The old real estate adage about "location, location, location" might also apply to the biochemical genesis of Alzheimer's disease, according to new research from the University of British Columbia.

Brain scans may change care for some people with memory loss

July 19, 2017
Does it really take an expensive brain scan to diagnose Alzheimer's? Not everybody needs one but new research suggests that for a surprising number of patients whose memory problems are hard to pin down, PET scans may lead ...

Can poor sleep boost odds for Alzheimer's?

July 18, 2017
(HealthDay)— Breathing problems during sleep may signal an increased risk for Alzheimer's disease, a trio of studies suggests.

Hearing is believing: Speech may be a clue to mental decline

July 17, 2017
Your speech may, um, help reveal if you're uh ... developing thinking problems. More pauses, filler words and other verbal changes might be an early sign of mental decline, which can lead to Alzheimer's disease, a study suggests.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.