Study identifies potential drug targets for muscular dystrophy treatments

January 9, 2017

Myotonic dystrophy type I (MD1) is a common form of muscular dystrophy associated with muscle wasting, weakness, and myotonia. These symptoms are linked to the accumulation of toxic gene transcripts in muscle cells that result from abnormal gene splicing.

Recent studies have indicated that muscle cell health and function depend critically on the pathways that support and autophagy, a process that helps degrade and recycle cellular debris.

This week in the JCI, a study led by Perrine Castets at the University of Basel has demonstrated that pharmacological treatments targeting AMPK and mTOR signaling pathways, which regulate energy balance and autophagy in cells, improve the symptoms of MD1 in a mouse model. They initially observed that AMPK and mTORC1 pathways were disrupted in from the MD1 model mice.

Further investigation revealed that autophagy was also impaired in MD1 muscle, and this impairment contributed to dystrophy-like symptoms in the mice. When MD1 mice were treated with a drug that activated AMPK signaling, they displayed improvements in muscle function as well as reductions in abnormal gene splicing. Treating MD1 mice with rapamycin, a clinically-approved drug that activates mTORC1 signaling, also reduced signs of muscle pathology.

These findings identify targets in the AMPK and mTORC1 pathways that may be potential therapies for MD1.

Explore further: New target may slow disease progression in Duchenne muscular dystrophy

More information: Marielle Brockhoff et al, Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I, Journal of Clinical Investigation (2017). DOI: 10.1172/JCI89616

Related Stories

Uncleaned cells mean weak muscles

April 23, 2013

The protein complex mTORC1 promotes muscle growth. However, should this complex remain constantly active, it impairs the ability of the cells to self-clean, causing myopathy. Scientists working with Markus Rüegg, Professor ...

Recommended for you

As cells age, the fat content within them shifts

January 19, 2017

As cells age and stop dividing, their fat content changes, along with the way they produce and break down fat and other molecules classified as lipids, according to a new University at Buffalo study.

What causes sleepiness when sickness strikes

January 19, 2017

It's well known that humans and other animals are fatigued and sleepy when sick, but it's a microscopic roundworm that's providing an explanation of how that occurs, according to a study from researchers at the Perelman School ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.