Study sheds light on the biology of progressive form of multiple sclerosis, suggests a new potential path for treatment

February 8, 2017, Brigham and Women's Hospital

A research team led by scientists from Brigham and Women's Hospital has revealed how an FDA-approved drug works in the central nervous system in mice to suppress chronic inflammation. The drug, known as FTY720 (or Fingolimod) interferes with signals sent through sphingosine-1-phosphate receptors, and appears to reduce the pathogenic activities of astrocytes. The findings suggest the treatment may hold promise for a progressive and difficult-to-treat form of multiple sclerosis (MS) known as secondary progressive MS (SPMS).

"One of the most important unmet clinical needs in MS is to design therapeutic approaches for the progressive phase of the disease," said senior author Francisco Quintana, PhD, a researcher in the Ann Romney Center for Neurologic Diseases at BWH. "And a key unanswered question related to that is, what are the biological processes that drive disease pathogenesis at this stage?"

MS is a that affects the central nervous system. It frequently begins with a relapsing-remitting course that often gives way to second phase, SPMS, which is characterized by severe and irreversible neurological decline. Unfortunately, there are few therapies that target this form of MS. Notably, treatments for the relapsing-remitting phase of the disease are ineffective against SPMS.

The current study, published in PNAS and led by Quintana and his colleagues, sheds new light on the role of sphingosine-1-phosphate, a type of lipid, and its receptors in SPMS. The researchers found that blockage of these signals with FTY720 had important effects on astrocytes in both mice and humans, decreasing their pro-inflammatory and neurotoxic properties while also increasing the cells' anti-inflammatory capabilities.

Although the findings are noteworthy, the neuroprotective effects Quintana and his colleagues observe are not as strong as those they have recorded in previous studies of other drugs. Nevertheless, the results suggest FTY720 may help mitigate some aspects of SPMS in humans. A clinical trial of a highly related drug, led by Novartis, is now underway and encouraging preliminary results have been recently released, Quintana said.

Explore further: Stem cell transplants may induce long-term remission of multiple sclerosis

More information: Veit Rothhammer et al, Sphingosine 1-phosphate receptor modulation suppresses pathogenic astrocyte activation and chronic progressive CNS inflammation, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1615413114

Related Stories

Stem cell transplants may induce long-term remission of multiple sclerosis

February 1, 2017
New clinical trial results provide evidence that high-dose immunosuppressive therapy followed by transplantation of a person's own blood-forming stem cells can induce sustained remission of relapsing-remitting multiple sclerosis ...

Receptor variation influences fingolimod efficacy in mouse multiple sclerosis models

June 16, 2016
Multiple sclerosis (MS) is an autoimmune disorder that results in demyelination of neurons. The FDA-approved drug fingolimod (Gilenya, FTY-720) modulates signaling by the bioactive lipid sphingosine-1-phosphate (S1P), which ...

Exploring the gut-brain connection for insights into multiple sclerosis

May 9, 2016
New research by investigators at Brigham and Women's Hospital (BWH) suggests that bacteria living in the gut may remotely influence the activity of cells in the brain that are involved in controlling inflammation and neurodegeneration. ...

Basic research shows that drug used to treat multiple sclerosis may have beneficial effects on memory

May 28, 2014
(Medical Xpress)—Virginia Commonwealth UniversitySchool of Medicine researchers have uncovered a new mechanism of action of fingolimod, a drug widely used to treat multiple sclerosis: elimination of adverse or traumatic ...

Primary progressive and relapsing remitting multiple sclerosis treated with ocrelizumab

October 21, 2015
Three phase three clinical studies using the drug ocrelizumab to treat patients with multiple sclerosis (MS) have yielded positive results for treating two forms of the disease and the first ever positive results for a treatment ...

Recommended for you

MDMA makes people cooperative, but not gullible

November 19, 2018
New research from King's College London has found that MDMA, the main ingredient in ecstasy, causes people to cooperate better—but only with trustworthy people. In the first study to look in detail at how MDMA impacts cooperative ...

How the brain switches between different sets of rules

November 19, 2018
Cognitive flexibility—the brain's ability to switch between different rules or action plans depending on the context—is key to many of our everyday activities. For example, imagine you're driving on a highway at 65 miles ...

Mutation that causes autism and intellectual disability makes brain less flexible

November 19, 2018
About 1 percent of patients diagnosed with autism spectrum disorder and intellectual disability have a mutation in a gene called SETD5. Scientists have now discovered what happens on a molecular level when the gene is mutated ...

Signal peptides' novel role in glutamate receptor trafficking and neural synaptic activity

November 19, 2018
Glutamate is the major excitatory neurotransmitter in the brain, and the postsynaptic expression level of glutamate receptors is a critical factor in determining the efficiency of information transmission and the activity ...

Scientists identify novel target for neuron regeneration and functional recovery in spinal cord injury

November 19, 2018
Restoring the ability to walk following spinal cord injury requires neurons in the brain to reestablish communication pathways with neurons in the spinal cord. Mature neurons, however, are unable to regenerate their axons ...

Study explains behavioral reaction to painful experiences

November 19, 2018
Exposure to uncomfortable sensations elicits a wide range of appropriate and quick reactions, from reflexive withdrawal to more complex feelings and behaviors. To better understand the body's innate response to harmful activity, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.