Researchers identify new cause of brain defects in tuberous sclerosis patients

February 9, 2017, Rockefeller University Press
Electron microscopy shows that, compared to a mouse lacking neuronal Tsc1 (left), the number of axons wrapped in a myelin sheath is increased in the brain of a mouse that also lacks CTGF (right). Credit: Ercan et al., 2017

Boston Children's Hospital researchers have uncovered a new molecular pathway that inhibits the myelination of neurons in the brains of patients with the rare genetic disorder tuberous sclerosis complex (TSC). The study, "Neuronal CTGF/CCN2 negatively regulates myelination in a mouse model of tuberous sclerosis complex," which will be published online February 9 in The Journal of Experimental Medicine, suggests new ways to treat some of the neurological symptoms associated with TSC, including autism and epilepsy.

TSC is caused by mutations in the genes TSC1 and TSC2. The disease affects approximately 1 in 6,000 people and is characterized by the growth of numerous benign tumors in different tissues of the body, including the brain, skin, eyes, kidneys, heart, and lungs. Many patients also have such as epilepsy, intellectual disability, and autism. Patients' brains show various abnormal structures. In particular, TSC patients with autism show defects in the organization of their , the regions of the brain where oligodendrocyte cells protect neuronal axons by wrapping them in an insulating myelin sheath.

Mustafa Sahin and colleagues previously found that mice whose lack TSC1 fail to myelinate their axons correctly, but the reason for this defect remained unclear. Sahin's team at Boston Children's Hospital and Harvard Medical School now reveal that neurons lacking TSC1 secrete increased amounts of a protein called connective tissue growth factor (CTGF) and that this protein impedes oligodendrocyte development and myelination. Deleting the gene encoding CTGF restored the ability of oligodendrocytes to myelinate axons in mice lacking neuronal TSC1.

Sahin and colleagues found that CTGF levels were also elevated in neurons derived from TSC patients. "Our study provides the first description of a molecular mechanism that could underlie the aberrant white matter microstructure in TSC ," Sahin says. "Future studies of the effects of CTGF on oligodendrocyte development will be a major goal for the discovery of new therapeutic targets."

The researchers add that the role of CTGF secreted from neurons should be investigated in other myelination diseases, including multiple sclerosis and some forms of cerebral palsy.

Explore further: Oligodendrocytes selectively myelinate a particular set of axons in the white matter

More information: The Journal of Experimental Medicine, DOI: 10.1084/jem.20160446

Related Stories

Oligodendrocytes selectively myelinate a particular set of axons in the white matter

October 21, 2016
There are three kinds of glial cells in the brain: oligodendrocytes, astrocytes and microglia. Oligodendrocytes myelinate neuronal axons to increase conduction velocity of neuronal impulses. A Japanese research team at the ...

Rare genetic disorder gives clues to autism, epilepsy, mental retardation

September 23, 2008
A rare genetic disorder called tuberous sclerosis complex (TSC) is yielding insight into a possible cause of some neurodevelopmental disorders: structural abnormalities in neurons, or brain cells. Researchers in the F.M. ...

Impaired recycling of mitochondria in autism?

October 18, 2016
Tuberous sclerosis complex (TSC), a genetic disorder that causes autism in about half of those affected, could stem from a defect in a basic system cells use to recycle their mitochondria, report scientists at Boston Children's ...

Research adds to evidence that autism is a brain 'connectivity' disorder

January 10, 2010
Studying a rare disorder known as tuberous sclerosis complex (TSC), researchers at Children's Hospital Boston add to a growing body of evidence suggesting that autism spectrum disorders, which affect 25 to 50 percent of TSC ...

Autism may involve disordered white matter in the brain

December 5, 2011
It's still unclear what's different in the brains of people with autism spectrum disorders (ASDs), but evidence from genetic and cell studies points to abnormalities in how brain cells (neurons) connect to each other. A study ...

Deleting a single gene results in autism-like behavior; immunosuppressant drug prevents symptoms

July 2, 2012
Deleting a single gene in the cerebellum of mice can cause key autistic-like symptoms, researchers have found. They also discovered that rapamycin, a commonly used immunosuppressant drug, prevented these symptoms.

Recommended for you

Consuming caffeine from coffee reduces incident rosacea

October 22, 2018
(HealthDay)—Caffeine intake from coffee is inversely associated with the risk for incident rosacea, according to a study published online Oct. 17 in JAMA Dermatology.

Home-based biofeedback therapy is effective option for tough-to-treat constipation

October 22, 2018
Biofeedback therapy used at home is about 70 percent effective at helping patients learn how to coordinate and relax bowel muscles and relieve one of the most difficult-to-treat types of constipation, investigators report.

New hope for cystic fibrosis

October 19, 2018
A new triple-combination drug treatment being trialled at the Mater Hospital in Brisbane could increase the life expectancy of patients with cystic fibrosis.

Bug guts shed light on Central America Chagas disease

October 18, 2018
In Central America, Chagas disease, or American trypanosomiasis, is spread by the "kissing bug" Triatoma dimidiata. By collecting DNA from the guts of these bugs, researchers reporting in PLOS Neglected Tropical Diseases ...

Rapid genomic sequencing of Lassa virus in Nigeria enabled real-time response to 2018 outbreak

October 18, 2018
Mounting a collaborative, real-time response to a Lassa fever outbreak in early 2018, doctors and scientists in Nigeria teamed up with researchers at Broad Institute of MIT and Harvard and colleagues to rapidly sequence the ...

Researchers cure drug-resistant infections without antibiotics

October 17, 2018
Biochemists, microbiologists, drug discovery experts and infectious disease doctors have teamed up in a new study that shows antibiotics are not always necessary to cure sepsis in mice. Instead of killing causative bacteria ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.