Researchers find genetic cause of new type of muscular dystrophy

February 9, 2017, George Washington University

A newly discovered mutation in the INPP5K gene, which leads to short stature, muscle weakness, intellectual disability, and cataracts, suggests a new type of congenital muscular dystrophy. The research was published in the American Journal of Human Genetics by researchers from the George Washington University (GW), St. George's University of London, and other institutions.

"The average pediatrician may only see one child with a rare disorder in his or her entire career. Even working with a team of specialists, it can sometimes take years for a child to be diagnosed with a specific rare disease," said Chiara Manzini, Ph.D., co-corresponding author for the study and assistant professor in the GW Institute for Neuroscience and in pharmacology & physiology at the GW School of Medicine and Health Sciences. "With a correct diagnosis, families have access to the best care and what to expect as far as the progression of the disease. From a research standpoint, we can develop new, targeted therapies to help these patients."

The research team found five individuals from four families presenting with variable clinical features, including muscular dystrophy, short stature, , and cataracts. While these indicators overlap with related syndromes, dystroglycanopathies and Marinesco-Sjögren syndrome, sequencing revealed a unique mutation in the gene INPP5K in the affected members of each family. This is what led the researchers to believe these individuals are presenting a new type of congenital muscular dystrophy.

Congenital muscular dystrophy is a group of characterized by , with its onset at or near birth. The cause is genetic mutations in responsible for making the proteins necessary to build and maintain muscles, and sometimes to correctly develop the eyes and the brain. However, the INPP5K gene is unique in that it has a different function than other genes associated with congenital muscular dystrophy. Most genes involved in congenital muscular dystrophy are responsible for maintaining contacts between muscle fibers, while this gene has a function inside the cell and regulates both signaling in response to factors like insulin, and protein trafficking.

"Now that we've identified the genetic mutation, we want to know why the disruption in the gene causes this disorder," said Manzini. "The unique mechanism of this gene could help us develop therapies we have not thought about before, and may move research in a different direction."

"Mutations in the inositol phosphatase INPP5K cause a syndrome overlapping the dystroglycanopathies and Marinesco-Sjögren Syndrome" was published in The American Journal of Human Genetics.

Explore further: New research increases understanding of Duchenne muscular dystrophy

Related Stories

New research increases understanding of Duchenne muscular dystrophy

October 13, 2016
A new paper, co-written by faculty at Binghamton University, State University of New York, increases the understanding of Duchenne muscular dystrophy (DMD)—one of the most common lethal genetic disorders—and points to ...

Study identifies potential drug targets for muscular dystrophy treatments

January 9, 2017
Myotonic dystrophy type I (MD1) is a common form of muscular dystrophy associated with muscle wasting, weakness, and myotonia. These symptoms are linked to the accumulation of toxic gene transcripts in muscle cells that result ...

New target may slow disease progression in Duchenne muscular dystrophy

September 12, 2016
Duchenne muscular dystrophy is a chronic disease causing severe muscle degeneration that is ultimately fatal. As the disease progresses, muscle precursor cells lose the ability to create new musclar tissue, leading to faster ...

Muscular dystrophy: Repair the muscles, not the genetic defect

September 14, 2014
A potential way to treat muscular dystrophy directly targets muscle repair instead of the underlying genetic defect that usually leads to the disease.

Recommended for you

Student develops microfluidics device to help scientists identify early genetic markers of cancer

October 16, 2018
As anyone who has played "Where's Waldo" knows, searching for a single item in a landscape filled with a mélange of characters and objects can be a challenge. Chrissy O'Keefe, a Ph.D. student in the Department of Biomedical ...

Researchers use brain cells in a dish to study genetic origins of schizophrenia

October 16, 2018
A study in Biological Psychiatry has established a new analytical method for investigating the complex genetic origins of mental illnesses using brain cells that are grown in a dish from human embryonic stem cells. Researchers ...

Why heart contractions are weaker in those with hypertrophic cardiomyopathy

October 16, 2018
When a young athlete suddenly dies of a heart attack, chances are high that they suffer from familial hypertrophic cardiomyopathy (HCM). Itis the most common genetic heart disease in the US and affects an estimated 1 in 500 ...

Importance of cell cycle and cellular senescence in the placenta discovered

October 15, 2018
Working with researchers from Stanford University and St. Anna Children's Cancer Research, researchers from Jürgen Pollheimer's laboratory at the Medical University of Vienna's Department of Obstetrics and Gynecology have ...

Team's study reveals hidden lives of medical biomarkers

October 12, 2018
What do medical biomarkers do on evenings and weekends, when they might be considered off the clock?

Researchers find a 'critical need' for whole genome sequencing of young cancer patients

October 12, 2018
St. Jude Children's Research Hospital has re-defined the gold standard for diagnostic testing of childhood cancer patients in the precision-medicine era and has implemented the testing for new cancer patients. The findings ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.