Horror movie scenes help team identify key brain circuits for processing fear

February 8, 2017, University of California, Irvine
Credit: George Hodan/public domain

Researchers at the University of California, Irvine have identified a key neural pathway in humans that explains how the brain processes feelings of fear and anxiety, a finding that could help scientists unlock new ways to treat mental health disorders.

People are motivated to remember fearful events, because this information is useful for daily survival. Yet over-interpretation of fear may lead to anxiety and other mental disorders. Understanding how the human processes fearful information has been a topic of intense scientific research. Until now, the brain circuit underlying fear has only been mapped in rodents.

The study, "Amygdala-hippocampal dynamics during salient information processing," appears today in the journal Nature Communications.

Researchers recorded neuronal activity using electrodes inserted into the and hippocampus of nine people as they watch scenes from horror movies to stimulate the recognition of fear.

"Deep brain electrodes capture neurons firing millisecond by millisecond, revealing in real time how the brain attends to fearful stimuli," said Jie Zheng, a UCI graduate student and the study's first author.

Researchers demonstrated that these two regions, nestled deep in the center of the brain and which play a key role in recognizing emotional stimuli and encoding them in memories, are directly exchanging signals.

"In fact, neurons in the amygdala fired 120 milliseconds earlier than the hippocampus. It is truly remarkable that we can measure the brain dynamics with such precision," said Zheng. "Further, the traffic pattern between the two brain regions are controlled by the emotion of the movie; a unidirectional flow of information from the amygdala to the hippocampus only occurred when people were watching fearful movie clips but not while watching peaceful scenes."

Human and animal studies have established the amygdala's role in fear processing and a parallel role the hippocampus plays in enhanced memory processing of emotional events. Despite the breadth of this research, senior author Dr. Jack Lin, said it was not previously known how these two nearby brain regions interact during the recognition of fearful stimulus.

"Most studies focus on each brain region in isolation," said Lin, a UCI professor of neurology. "Our study unifies the varied literature on the roles of the amygdala and hippocampus in emotional processing, with direct evidence that the amygdala first extracts emotional relevance and then sends this information to the to be processed as a memory."

Understanding the activation of the exact brain network in processing fearful stimuli is critical to develop new treatment for psychiatric disorders in the era of personalized medicine.

"This is the first study in humans to delineate the mechanism by which our brain processes fear at the circuitry level," Lin said. "This has huge implications for treating neuropsychiatric disorders. For example, current drugs available to treat anxiety disorder bind to large areas of the brain, leading to unwanted side effects." "Our hope is that we will one day be able to target and manipulate the precise amygdala-hippocampal circuit involved in processing negative emotions while preserving positive ones," he said. "This study brings the promise of targeted therapy a step closer."

Measurements were collected from electrodes implanted by UC Irvine Health neurosurgeons in nine patients with medication-resistant epilepsy as part of an assessment of their seizure activity. Electrode placement was guided exclusively by these patients' clinical needs, Lin said

Explore further: Rhythm of breathing affects memory and fear

Related Stories

Rhythm of breathing affects memory and fear

December 6, 2016
Northwestern Medicine scientists have discovered for the first time that the rhythm of breathing creates electrical activity in the human brain that enhances emotional judgments and memory recall.

Where does innate fear come from?

January 23, 2017
The 20th century has seen an explosion of scientific efforts made to reveal the biological substrates of cognitive functions. Emotions and cognitive processes interact to build up complex behavioural responses and to drive ...

Neuroscientists identify two neuron populations that encode happy or fearful memories

October 18, 2016
Our emotional state is governed partly by a tiny brain structure known as the amygdala, which is responsible for processing positive emotions such as happiness, and negative ones such as fear and anxiety.

Fear boosts activation of young, immature brain cells

June 14, 2011
(PhysOrg.com) -- Fear burns memories into our brain, and new research by University of California, Berkeley, neuroscientists explains how.

A new neural circuit controls fear in the brain

January 19, 2015
Some people have no fear, like that 17-year-old kid who drives like a maniac. But for the nearly 40 million adults who suffer from anxiety disorders, an overabundance of fear rules their lives. Debilitating anxiety prevents ...

Psilocybin inhibits the processing of negative emotions in the brain

May 7, 2014
Emotions like fear, anger, sadness, and joy enable people to adjust to their environment and react flexibly to stress and strain and are vital for cognitive processes, physiological reactions, and social behaviour. The processing ...

Recommended for you

New ALS therapy in clinical trials—drug extends survival, reverses some neuromuscular damage in animals

July 16, 2018
About 20,000 people in the United States are living with amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease. The invariably fatal disease kills the nerve cells that control walking, eating and breathing. ...

Convergence of synaptic signals is mediated by a protein critical for learning and memory

July 16, 2018
Inside the brain, is a complex symphony of perfectly coordinated signaling. Hundreds of different molecules amplify, modify and carry information from tiny synaptic compartments all the way through the entire length of a ...

Synapse-specific plasticity governs the identity of overlapping memory traces

July 16, 2018
Memories are formed through long-term changes in synaptic efficacy, a process known as synaptic plasticity, and are stored in the brain in specific neuronal ensembles called engram cells, which are activated during corresponding ...

'Concussion pill' shows promise in pre-clinical pilot study

July 16, 2018
In 2016, funded by a $16 million grant from Scythian, the multidisciplinary Miller School team embarked on a five-year study to examine the effects of combining CBD (a cannabinoid derivative of hemp) with an NMDA antagonist ...

Fetal gene therapy prevents fatal neurodegenerative disease

July 16, 2018
A fatal neurodegenerative condition known as Gaucher disease can be prevented in mice following fetal gene therapy, finds a new study led by UCL, the KK Women's and Children's Hospital and National University Health System ...

Rehabilitating the mind could improve outcomes after spinal cord injury

July 16, 2018
A study led by Heriot-Watt University has explored how individuals with spinal cord injuries perceive the space around them. The findings suggest additions are needed to the rehabilitation programmes adopted post-injury to ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.