Research sheds light on mechanisms underlying aging

February 16, 2017
Aric Rogers, Ph.D., of the MDI Biological Laboratory in Bar Harbor, Maine, studies the molecular mechanisms underlying aging in the roundworm, C. elegans. Credit: MDI Biological Laboratory

Scientists have known for decades that drastically restricting certain nutrients without causing malnutrition prolongs health and lifespan in a wide range of species, but the molecular mechanisms underlying this effect have remained a mystery.

In a paper recently published in the journal Aging Cell, MDI Biological Laboratory scientist Aric Rogers, Ph.D., sheds light on an important genetic pathway underlying this process, raising the possibility that therapies can be developed that prolong the healthy years without having to suffering the consequences of a severely restricted diet.

"It's tantalizing to think that we might be able to activate a protective response to enhance our own health without resorting to extreme dietary regimes," Rogers said.

Rogers studies mechanisms important to the positive effects of dietary restriction in an intact organism—the tiny roundworm, C. elegans—as opposed to cells in a petri dish. C. elegans is an important model in aging research because it shares nearly half of its genes with humans and because of its short lifespan—it lives for only two to three weeks—which allows scientists to study many generations over a short period of time.

"Aric's identification of a molecular mechanism governing the life-prolonging effects of dietary restriction is a validation of our unique approach to research in aging and regenerative biology," said Kevin Strange, Ph.D., president of the MDI Biological Laboratory. "Our use of whole organisms as research models provides greater insight into the many factors controlling physiological processes than the use of cells alone."

Rogers studies the underlying aging at the MDI Biological Laboratory's Kathryn W. Davis Center for Regenerative Biology and Medicine. The laboratory is an independent, non-profit biomedical research institution located in Bar Harbor, Maine, focused on increasing healthy lifespan and increasing the body's natural ability to repair and regenerate tissues damaged by injury or disease.

The life-prolonging effects of , also known as DR or CR (calorie restriction), occur in just about every animal tested. They are thought to be an evolutionary adaptation to harsh environmental conditions. In the absence of enough food to eat, evolution has programmed organisms to switch from a growth mode to a survival mode so they can live long enough to reproduce when conditions improve.

Scientists have known for decades that drastically restricting certain nutrients without causing malnutrition prolongs health and lifespan in a wide range of species, but the molecular mechanisms underlying this effect have remained a mystery.In a paper recently published in the journal Aging Cell, MDI Biological Laboratory scientist Aric Rogers, Ph.D., sheds light on an important genetic pathway underlying this process, raising the possibility that therapies can be developed to prolong healthy human lifespan. Credit: MDI Biological Laboratory

The new study builds on Rogers' earlier research linking the effects of DR to the inhibition of genes governing the formation of proteins. In times of hardship, the body cuts back on the bulk of proteins synthesized, which are linked with growth and reproduction, in order to redirect the cell's energy toward stress-responsive proteins that help extend lifespan by maintaining cell balance and health.

Specifically, the study found that the enhanced robustness associated with reducing the production of protein isn't from reduced protein synthesis per se, rather to the triggering of a stress response governing protein homeostasis—or proteostasis—a fancy word for the cell's quality control machinery. The stress response ensures that this quality control machinery keeps working optimally, despite harsh environmental conditions.

The cell's quality control machinery is responsible for ensuring that newly synthesized proteins are properly shaped and that damaged proteins are quickly destroyed. Misshapen and damaged proteins can interfere with cell function, leading to disease and death.

The identification of a mechanism underlying the protective effect of DR could lead to therapies for age-related diseases, including Alzheimer's and Parkinson's, that are associated with diminished cellular quality control. Alzheimer's, for instance, is associated with the build-up of a toxic protein, beta amyloid, in the brain, and Parkinson's with a build-up of a toxic protein called alpha synuclein.

The link between aging and weakened cellular "housekeeping" functions raises the possibility that new drugs to prolong lifespan could also delay the onset of age-related degenerative diseases. Now that Rogers has identified a link, the next step is to investigate cause and effect by manipulating the genetic pathways that inhibit protein formation to see if the body's ability to clear molecular clutter is improved.

"We think therapies to activate these protective pathways could not only prolong lifespan, but also delay the onset of age-related diseases," Rogers said. "Most older people suffer from multiple chronic diseases. Anti-aging procedures applied to disease models almost always delay disease onset and improve outcomes, which suggests that disease-suppressing benefits may be accessed to extend healthy human lifespan."

Explore further: Life-prolonging protein could inhibit ageing diseases

More information: Amber C. Howard et al. Reducing translation through eIF4G/IFG-1 improves survival under ER stress that depends on heat shock factor HSF-1 in, Aging Cell (2016). DOI: 10.1111/acel.12516

Related Stories

Life-prolonging protein could inhibit ageing diseases

May 29, 2015
Researchers have found a molecule that plays a key link between dietary restriction and longevity in mammals. This discovery may lead to the development of new therapies to inhibit age-related diseases.

Molecular mechanism behind health benefits of dietary restriction identified

December 23, 2014
A new study led by Harvard School of Public Health (HSPH) researchers identifies a key molecular mechanism behind the health benefits of dietary restriction, or reduced food intake without malnutrition. Also known as calorie ...

Fine-tuning cellular energy increases longevity

February 25, 2016
In new research from the Sanford Burnham Prebys Medical Discovery Institute (SBP), scientists have identified a protein that can extend the natural lifespan of C. elegans, a microscopic roundworm commonly used for research ...

Recommended for you

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Estrogen discovery could shed new light on fertility problems

December 12, 2017
Estrogen produced in the brain is necessary for ovulation in monkeys, according to researchers at the University of Wisconsin-Madison who have upended the traditional understanding of the hormonal cascade that leads to release ...

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

3-D printed microfibers could provide structure for artificially grown body parts

December 12, 2017
Much as a frame provides structural support for a house and the chassis provides strength and shape for a car, a team of Penn State engineers believe they have a way to create the structural framework for growing living tissue ...

Team identifies DNA element that may cause rare movement disorder

December 11, 2017
A team of Massachusetts General Hospital (MGH) researchers has identified a specific genetic change that may be the cause of a rare but severe neurological disorder called X-linked dystonia parkinsonism (XDP). Occurring only ...

Protein Daple coordinates single-cell and organ-wide directionality in the inner ear

December 11, 2017
Humans inherited the capacity to hear sounds thanks to structures that evolved millions of years ago. Sensory "hair cells" in the inner ear have the amazing ability to convert sound waves into electrical signals and transmit ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.