Mouse model could shed new light on immune system response to Zika virus

February 23, 2017, Public Library of Science
A digitally-colorized transmission electron micrograph (TEM) of Zika virus, which is a member of the family Flaviviridae. Virus particles, here colored red, are 40 nm in diameter, with an outer envelope, and an inner dense core. Credit: CDC Global via Flickr

A new mouse model with a working immune system could be used in laboratory research to improve understanding of Zika virus infection and aid development of new treatments, according to a study published in PLOS Pathogens.

The ongoing Zika pandemic has caused infection in millions of people in the Americas and spurred new research using laboratory animals to study the virus. However, most of this research has been performed in mice with defective immune systems, resulting in limited understanding of the to Zika virus and slowing efforts to develop potential vaccines and antiviral treatments.

Researchers are working to develop Zika virus models in mice with functioning immune systems. In the new study, a team led by Dr. Martin Richer and Dr. Selena Sagan at McGill University successfully caused Zika infection in adult mice with healthy immune systems and studied the immune response to infection.

The scientists employed a mouse strain called C57BL/6, which is often used to study other diseases. They showed that adult C57BL/6 mice could be infected with Zika virus, with most mice experiencing mild symptoms—similar to most infected humans. Like other viruses, Zika virus caused an innate and in the mice.

The researchers used a technique known as the "surrogate marker" approach to indirectly track how cells called T cells responded to infection. This approach led to identification of a specific portion ("epitope") of a Zika virus protein that is recognized by mouse T cells.

The new mouse model could be used in further research to investigate the immune response to Zika virus. In particular, the newly identified Zika virus epitope could point the way to specific molecular strategies for studying T cell responses to infection and could aid vaccine development.

"Our findings are particularly exciting because we now know that we can study the immune response to Zika virus in with a normal immune system," the authors explain. "Importantly, this model, as well as the discovery of a specific part of the virus recognized by mouse T cells, provides us with tools that will allow us to advance the understanding of this emerging human pathogen."

Explore further: Scientists develop new mouse model to aid Zika virus research

More information: Pardy RD, Rajah MM, Condotta SA, Taylor NG, Sagan SM, Richer MJ (2017) Analysis of the T Cell Response to Zika Virus and Identification of a Novel CD8+ T Cell Epitope in Immunocompetent Mice. PLoS Pathog 13(2): e1006184. DOI: 10.1371/journal.ppat.1006184

Related Stories

Scientists develop new mouse model to aid Zika virus research

November 17, 2016
Researchers have developed a new mouse model that could be used in Zika research to better understand the virus and find new treatments, according to a study published in PLOS Pathogens.

More evidence that Zika mRNA vaccines can stop viral replication in mice

February 17, 2017
Vaccine developers have successfully protected mice against Zika by injecting synthetic messenger RNA that encodes for virus proteins into the animals. The cells of the mice then build parts of the virus, training the immune ...

Zika virus blindfolds immune alarm cells

February 2, 2017
Gatekeeper immune cells are fighting Zika virus with an arm tied behind their backs, scientists from Emory Vaccine Center report.

Zika virus harms testes, says study

February 23, 2017
The Zika virus reduces the size of testes in infected mice up to 21 days after infection, according to a new Yale study. The persistence of the virus in the male reproductive organ can lead to sexual transmission and may ...

T cells join the fight against Zika

January 12, 2017
The worst of the global Zika virus outbreak may be over but many key questions remain, such as why the virus persists in certain tissues after the systemic infection has cleared; how does the immune system counteract the ...

Research provides clues to how Zika virus breaches the placental barrier

September 15, 2016
New research reveals that in pregnant women, Zika virus infection damages certain cells that affect placental formation and function. Furthermore, herpes simplex virus-2 (HSV-2) infection augments placental sensitivity to ...

Recommended for you

Lower-risk malaria regions are breeding grounds for drug-resistant strains

August 21, 2018
New drug-resistant strains of the parasite that causes malaria tend to evolve in regions with a lower risk of malaria. This is because in hard-hit areas with high transmission rates, like sub-Saharan Africa, they get outcompeted ...

New method may allow country-level real-time surveillance of drug-resistant tuberculosis

August 21, 2018
Global tuberculosis control and elimination will require detailed real-time information on the location of individuals with the disease, the presence of drug resistance, and the patterns of transmission. The surveys currently ...

Study shows children with multidrug-resistant tuberculosis can be treated

August 21, 2018
The results of a large, international systematic review published in the journal PLOS Medicine show that tuberculosis treatment is successful in children with multidrug-resistant tuberculosis (MDR-TB). The study was used ...

Clay fights MRSA, other superbugs in wounds

August 21, 2018
The use of mud or wet clay as a topical skin treatment, or poultice, is a common practice in many cultures. In fact, the concept of using mud as medicine goes back to the earliest times.

Largest oral HPV study in England shows infection rates lower than expected

August 20, 2018
Infection rates of high risk human papillomavirus (HR-HPV) oral infection in England are lower than expected, compared to previous US studies.

Tibetan sheep highly susceptible to human plague, originates from marmots

August 16, 2018
In the Qinghai-Tibet plateau, one of the region's highest risk areas for human plague, Himalayan marmots are the primary carriers of the infectious bacterium Y. pestis. Y. pestis infection can be transmitted to humans and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.