Novel mutation may be linked to prostate cancer in African American men

February 23, 2017
Mutation site on ALKBH7. Credit: Alice R. Walker

Researchers have identified a novel mutation that may be associated with prostate cancer in African American men, according to a new study published in PLOS Computational Biology.

Scientists have long known that a huge variety of DNA mutations can lead to cancer. Some proteins can repair DNA mutations, but when repair proteins are mutated themselves, cancer may arise. Knowing which mutations are linked to which cancer types helps scientists develop new targeted treatments and detection strategies.

To improve knowledge of mutations associated with , Alice Walker of The University of North Texas, and colleagues searched for relevant mutations in genes that code for a family of DNA repair proteins known as AlkBH.

The researchers ran two separate datasets of DNA sequences through a software program called HyDn-SNP-S, which had previously been developed by members of the team. The software allowed them to compare DNA sequences of AlkBH family proteins from healthy genomes, to those found in genomes derived from prostate cancer tumors. In both datasets, a mutation in the gene that codes for a protein called ALKBH7 was significantly associated with prostate cancer in African American men.

Next, the researchers used computer simulations to investigate how the ALKBH7 mutation, R191Q, would affect the protein's structure. They found that the mutation might cause a structural change that significantly decreases the ability of the protein to perform its normal role. Spectroscopy experiments with actual protein samples confirmed these predictions.

According to study co-author G. Andrés Cisneros of the University of North Texas, the next steps for research are further experimental exploration of how the R191Q mutation is related to prostate cancer, as well as investigation of potential new avenues for detection and treatment based on the mutation.

"Scanning the DNA of individuals in the target population for this mutation could help indicate those with a higher risk of developing prostate cancer before symptoms are evident," Walker says.

Explore further: AUA: BRCA mutations may play role in prostate cancer

More information: Walker AR, Silvestrov P, MuÈller TA, Podolsky RH, Dyson G, Hausinger RP, et al. (2017) ALKBH7 Variant Related to Prostate Cancer Exhibits Altered Substrate Binding. PLoS Comput Biol 13(2): e1005345. DOI: 10.1371/journal.pcbi.1005345

Related Stories

AUA: BRCA mutations may play role in prostate cancer

May 10, 2016
(HealthDay)—A man's risk of aggressive and fatal prostate cancer may be heavily influenced by gene mutations previously linked to breast and ovarian cancer in women, a trio of new studies suggests. Findings from the studies ...

Inherited mutations in three genes predict for aggressive prostate cancer

December 15, 2016
A study of three genes associated with the development of prostate cancer found that men with inherited mutations in these genes are more likely to develop aggressive forms of the disease and die from prostate cancer at an ...

Researchers identify 'Achilles' heel' of PTEN that helps drive prostate cancer progression

February 13, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have discovered that a protein called Importin-11 protects the anti-cancer protein PTEN from destruction by transporting it into the cell nucleus. A study they publish today ...

Testing for inherited mutations could benefit men with advanced prostate cancer

July 6, 2016
Inherited mutations in genes that function to repair DNA may contribute to metastatic prostate cancer more than previously recognized, according to a study out today in the New England Journal of Medicine. Though infrequent ...

A gene defect as a potential gateway for targeted prostate cancer therapy

September 5, 2016
The loss of CHD1, one of the most frequently mutated genes in prostate tumors, sensitizes human prostate cancer cells to different drugs, including PARP inhibitors. This suggests CHD1 as a potential biomarker for targeted ...

New method reveals possible prostate cancer therapy

June 6, 2016
The steroid dexamethasone could potentially deter the growth of a prostate cancer subtype that was previously thought to be difficult to treat with medications, Weill Cornell Medicine researchers report. Their findings were ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.