Prostate cancer cells grow with malfunction of cholesterol control in cells

February 21, 2017 by Sarah Avery, Duke University Medical Center

Advanced prostate cancer and high blood cholesterol have long been known to be connected, but it has been a chicken-or-egg problem.

Now a team led by researchers at the Duke Cancer Institute have identified a cellular process that hijack to hoard and fuel their growth. Identifying this process could inform the development of better ways to control cholesterol accumulation in tumors, potentially leading to improved survival for prostate cancer patients.

The findings are published online this month in the journal Cancer Research.

"Prostate cancer cells, as well as some other solid tumors, have been shown to contain higher cholesterol levels than normal cells," said senior author Donald McDonnell, Ph.D., chairman of the Department of Pharmacology and Cancer Biology at Duke. "All cells need cholesterol to grow, and too much of it can stimulate uncontrolled growth.

"Prostate cancer cells somehow bypass the cellular control switch that regulates the levels of cholesterol allowing them to accumulate this fat," McDonnell said. "This process has not been well understood. In this study, we show how accomplish this."

McDonnell and colleagues began by identifying genes involved in cholesterol regulation in . They homed in on a specific gene, CYP27A1, which is a key component of the machinery that governs the level of cholesterol within cells.

In patients with prostate cancer, the expression of the CYP27A1 gene in tumors is significantly lower, and this is especially true for men with aggressive cancers compared to the tumors in men with more benign disease. Downregulation of this gene basically shuts off the sensor that cells use to gauge when they have taken up enough cholesterol. This in turn allows accumulation of this fat in tumor cells. Access to more cholesterol gives cells a selective growth advantage.

"It remains to be determined how this regulatory activity can be restored and/orwhether it's possible to mitigate the effects of the increased cholesterol uptake that result from the loss of CYP27A1 expression," McDonnell said.

He said statin use alone might help, but perhaps not enough, since tumors could simply rev up the regulation of the cholesterol manufacturing process in tumors to compensate.

McDonnell said is lab is continuing the research, including finding ways to induce cells to eject cholesterol, reverse the inhibition of CYP27A1 activity, or introduce compounds that interfere with cholesterol-production in the .

Explore further: Potential cholesterol-lowering drug molecule has prostate cancer fighting capabilities

More information: Mahmoud A Alfaqih et al. CYP27A1 loss dysregulates cholesterol homeostasis in prostate cancer, Cancer Research (2017). DOI: 10.1158/0008-5472.CAN-16-2738

Related Stories

Potential cholesterol-lowering drug molecule has prostate cancer fighting capabilities

April 14, 2016
Standard treatment for prostate cancer can include chemotherapy that targets receptors on cancer cells. However, drug-resistant cancer cells can emerge during chemotherapy, limiting its effectiveness as a cancer-fighting ...

Prostate cancer's penchant for copper may be a fatal flaw

October 15, 2014
Like discriminating thieves, prostate cancer tumors scavenge and hoard copper that is an essential element in the body. But such avarice may be a fatal weakness.

Research helps explain why androgen-deprivation therapy doesn't work for many prostate cancers

January 5, 2017
Metastatic prostate cancer, or prostate cancer that has spread to other organs, is incurable. In new research published in the journal Science, Roswell Park Cancer Institute scientists have identified two gatekeeper genes ...

Study reveals high–cholesterol diet increases spread of prostate cancer

March 31, 2015
University of Queensland research has shown that a high-cholesterol diet increases the spread of prostate cancer tumours to lymph nodes, lungs and bones.

Taking cholesterol-lowering drugs may also reduce the risk of dying from prostate cancer, study finds

May 2, 2013
Men with prostate cancer who take cholesterol-lowering drugs called statins are significantly less likely to die from their cancer than men who don't take such medication, according to study led by researchers at Fred Hutchinson ...

Recommended for you

Research team discovers drug compound that stops cancer cells from spreading

June 22, 2018
Fighting cancer means killing cancer cells. However, oncologists know that it's also important to halt the movement of cancer cells before they spread throughout the body. New research, published today in the journal Nature ...

Dying cancer cells make remaining glioblastoma cells more aggressive and therapy-resistant

June 21, 2018
A surprising form of cell-to-cell communication in glioblastoma promotes global changes in recipient cells, including aggressiveness, motility, and resistance to radiation or chemotherapy.

Existing treatment could be used for common 'untreatable' form of lung cancer

June 21, 2018
A cancer treatment already approved for use in certain types of cancer has been found to block cell growth in a common form of lung cancer for which there is currently no specific treatment available.

Novel therapy makes oxidative stress deadly to cancer

June 21, 2018
Oxidative stress can help tumors thrive, but one way novel cancer treatments work is by pushing levels to the point where it instead helps them die, scientists report.

Higher body fat linked to lower breast cancer risk in younger women

June 21, 2018
While obesity has been shown to increase breast cancer risk in postmenopausal women, a large-scale study co-led by a University of North Carolina Lineberger Comprehensive Cancer Center researcher found the opposite is true ...

Researchers uncover new target to stop cancer growth

June 21, 2018
Researchers at the University of Wisconsin-Madison have discovered that a protein called Munc13-4 helps cancer cells secrete large numbers of exosomes—tiny, membrane-bound packages containing proteins and RNAs that stimulate ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.