Prosthetic arm technology that detects spinal nerve signals developed

February 6, 2017, Imperial College London
An image of the sensor system and robotic prosthetic operated by a patient who took part in the laboratory experiments as part of the study. Credit: Imperial College London

Scientists have developed sensor technology for a robotic prosthetic arm that detects signals from nerves in the spinal cord.

To control the prosthetic, the patient has to think like they are controlling a phantom arm and imagine some simple manoeuvres, such as pinching two fingers together. The interprets the electrical signals sent from spinal and uses them as commands.

A motor neuron is a nerve cell that is located in the spinal cord. Its fibres, called axons, project outside the to directly control muscles in the body.

Robotic arm prosthetics currently on the market are controlled by the user twitching the remnant muscles in their shoulder or arm, which are often damaged. This technology is fairly basic in its functionality, only performing one or two grasping commands. This drawback means that globally around 40-50 per cent of users discard this type of robotic prosthetic.

The team in today's study, published in the journal Nature Biomedical Engineering, say detecting signals from spinal motor neurons in parts of the body undamaged by amputation, instead of remnant muscle fibre, means that more signals can be detected by the sensors connected to the prosthetic. This means that ultimately more commands could be programmed into the robotic prosthetic, making it more functional.

Dr Dario Farina, who is now based at Imperial College London, carried out much of the research while at the University Medical Centre Gottingen. The research was conducted in conjunction with Dr Farina's co-authors in Europe, Canada and the USA.

Dr Farina, from the Department of Bioengineering at Imperial, said: "When an arm is amputated the nerve fibres and muscles are also severed, which means that it is very difficult to get meaningful signals from them to operate a prosthetic. We've tried a new approach, moving the focus from muscles to the nervous system. This means that our technology can detect and decode signals more clearly, opening up the possibility of robotic prosthetics that could be far more intuitive and useful for patients. It is a very exciting time to be in this field of research."

The researchers carried out lab-based experiments with six volunteers who were either amputees from the shoulder down or just above the elbow. After some physiotherapy training, the amputees were able to make a more extensive range of movements than would be possible using a classic muscle-controlled robotic prosthetic. They came to this conclusion by comparing their research to previous studies on muscle-controlled robotic prosthetics.

The volunteers were able to move the elbow joint and do radial movements - moving the wrist from side to side - as well as opening and closing the hand. This means that the user has all basic hand and arm functions of a real arm.

Further refinements are needed to make the technology more robust, but the researchers suggest the current model could be on the market in the next three years.

To take part in the study, volunteers underwent a surgical procedure at the Medical University of Vienna that involved re-routing parts of their Peripheral Nervous System (PNS), connected with hand and arm movements, to healthy muscles in their body. Depending on the type of amputation, this re-routing was either directed to the pectoral muscle in the chest or the bicep in the arm. This enabled the team to clearly detect the electrical signals sent from the spinal motor neurons - a process the team liken to amplification of the signals.

To create the technology, the researchers decoded and mapped some of the information in sent from the re-routed nerve cells and then interpreted them in computer models. These models were then compared to models of healthy patients, which helped them to corroborate the results. Ultimately, the scientists want to decode the meaning behind all signals sent from these motor neurons, so that they can program a full range of arm and hand functions in the prosthetic. This would mean that the user could use the prosthetic almost as seamlessly as if it was their own arm.

The team then encoded specific motor neuron signals as commands into the design of the prosthetic. They then connected a sensor patch on the muscle that had been operated on as part the re-routing procedure, which was connected to the prosthetic. The amputees worked with physiotherapists so they could learn how to control the device by thinking about specific phantom arm and hand commands.

This research has taken the team to the end of the proof of concept stage with laboratory tests. The next step will involve extensive clinical trials with a much wider cross section of volunteers so that the technology can be made more robust.

"Man/machine interface based on the discharge timings of spinal motor neurons after targeted muscle reinnervation" is published today Nature Biomedical Engineering.

Explore further: Candidates for bionic hand reconstruction

More information: Man/machine interface based on the discharge timings of spinal motor neurons after targeted muscle reinnervation, Nature Biomedical Engineering, nature.com/articles/doi:10.1038/s41551-016-0025

Related Stories

Candidates for bionic hand reconstruction

January 17, 2017
Bionic hand? No longer only an image conjured by science fiction, bionic hands return functionality in cases of traumatic nerve and muscle loss. Certainly something to consider if you've lost your hand in an accident, but ...

Research team develops treatment algorithm for bionic hand reconstruction

January 18, 2017
A research group led by Oskar Aszmann of the Department of Surgery at MedUni Vienna and Vienna General Hospital has developed a treatment algorithm or protocol that can be used to establish which patients with global injuries ...

Ossur to announce clinical trials for implanted myoelectric sensors for brain-controlled prosthetics

May 21, 2015
Ossur, an Icelandic based prosthetics development company is set to announce the beginning of clinical trials for its Proprio foot, a new kind of brain controlled prosthetic ankle and foot. Instead of trying to connect the ...

Motorized prosthetics improves lives of amputees

August 12, 2016
When asked about her chosen field, Deanna Gates, director of the Rehabilitation Biomechanics Laboratory at the University of Michigan, always joked that she wanted to make Luke Skywalker's hand.

Database of natural movements to feed machine-learning algorithms for prostheses

October 17, 2016
Most amputees use purely aesthetic prostheses. They find it difficult to accept a robotic limb that is not only by and large complicated to use but also has somewhat unnatural motion. Most of the models on the market today ...

Recommended for you

Byproducts of 'junk DNA' implicated in cancer spread

August 14, 2018
The more scientists explore so-called "junk" DNA, the less the label seems to fit.

Doctors may be able to enlist a mysterious enzyme to stop internal bleeding

August 14, 2018
Blood platelets are like the sand bags of the body. Got a cut? Platelets pile in to clog the hole and stop the bleeding.

Artificial placenta created in the laboratory

August 14, 2018
In order to better understand important biological membranes, it is necessary to explore new methods. Researchers at Vienna University of Technology (Vienna) have succeeded in creating an artificial placental barrier on a ...

Using DeepMind's neural network learning system to diagnose eye diseases

August 14, 2018
Three institutions working together have applied DeepMind's neural network learning system to the task of discovering and diagnosing eye diseases. Moorfields Eye Hospital has been working with Google's DeepMind Health subsidiary ...

3-D printed biomaterials for bone tissue engineering

August 13, 2018
When skeletal defects are unable to heal on their own, bone tissue engineering (BTE), a developing field in orthopedics can combine materials science, tissue engineering and regenerative medicine to facilitate bone repair. ...

Artificial intelligence platform screens for acute neurological illnesses

August 13, 2018
An artificial intelligence platform designed to identify a broad range of acute neurological illnesses, such as stroke, hemorrhage, and hydrocephalus, was shown to identify disease in CT scans in 1.2 seconds, faster than ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.