Study reveals PGK1 enzyme as therapeutic target for deadliest brain cancer

February 23, 2017, University of Texas M. D. Anderson Cancer Center

Discovery of a dual role played by the enzyme phosphoglycerate kinase 1 (PGK1) may indicate a new therapeutic target for glioblastoma, an often fatal form of brain cancer, according to researchers at The University of Texas MD Anderson Cancer Center.

Findings published in the Feb. 23 online issue of Molecular Cell determined PGK1 as instrumental in regulating both cell metabolism and , a cellular process crucial to tumor development and maintenance. In previous studies, PGK1 was shown to play a role in coordinating cellular activities tied to cancer metabolism and brain tumor formation, and is associated with tumor metastasis and drug resistance.

"Our finding that PGK1 acts as both a glycolytic enzyme and a protein kinase in cell metabolism, autophagy, and cell proliferation greatly enhances our understanding of protein enzymes controlling cellular function," said Zhimin Lu, M.D., Ph.D., professor of Neuro-Oncology. "Because it regulates both autophagy and , PGK1 proves its significance in maintaining , thus offering a potential new approach for cancer treatment."

Lu's team found that PGK1 unexpectedly impacts the protein Beclin1 through phosphorylation, which modulates protein function. Beclin1 plays a central role in autophagy, a "recycling" process allowing cells to thrive even when starved of nutrients and/or oxygen. Autophagy has been increasingly linked to cancer since it permits tumors to access vital energy sources and necessary to grow and spread.

The researchers observed that lack of oxygen and the essential amino acid glutamine resulted in a complex protein-related chain of events where PGK1 phosphorylates Beclin1, which is required for autophagy and brain tumor development. The process is thought to be one reason why glioblastoma patients generally have poor prognoses.

"Upregulated tumor-protective autophagy is one of the reasons for cancer treatment resistance," said Lu. "These findings suggest that approaches inhibiting PGK1-regulated autophagy are likely to increase efficacy. Further investigations into this area of research are underway."

Explore further: PGK1 protein promotes brain tumor formation and cancer metabolism

Related Stories

PGK1 protein promotes brain tumor formation and cancer metabolism

March 3, 2016
PGK1, a glycolytic enzyme, has been found to play a role in coordinating cellular processes crucial to cancer metabolism and brain tumor formation, according to results published in today's online issue of Molecular Cell. ...

Study suggests that autophagy inhibitors could improve efficacy of chemotherapies

October 24, 2016
Chemotherapies treat cancer by killing tumor cells, but certain types of chemotherapy can also drive an immune system response to target and destroy the remaining tumor cells.

Role for autophagic cellular degradation process in maintaining genomic stability

November 29, 2016
Centrosomes play an essential role in cell division by organizing the protein framework on which chromosomes assemble and then separate prior to division into daughter cells. Centrosomes are made up of a pair of centrioles, ...

Inducing metabolic catastrophe in cancer cells

August 31, 2015
A study published in The Journal of Cell Biology describes a way to force cancer cells to destroy a key metabolic enzyme they need to survive.

Protein induces self-destruction in cancer cells

January 21, 2015
The role of a phosphatase protein in promoting the self-destruction of healthy cells and the progression of ovarian cancer has been identified by A*STAR researchers. Known to be overexpressed in cancer cells, the protein, ...

Recommended for you

New therapeutic gel shows promise against cancerous tumors

February 21, 2018
Scientists at the UNC School of Medicine and NC State have created an injectable gel-like scaffold that can hold combination chemo-immunotherapeutic drugs and deliver them locally to tumors in a sequential manner. The results ...

Kinase inhibitor larotrectinib shows durable anti-tumor abilities

February 21, 2018
Three simultaneous safety and efficacy studies of the drug larotrectinib reported an overall response rate of 75 percent for patients ages four months to 76 years with 17 different cancer diagnoses. All patients had tumors ...

Five novel genetic changes linked to pancreatic cancer risk

February 21, 2018
In what is believed to be the largest pancreatic cancer genome-wide association study to date, researchers at the Johns Hopkins Kimmel Cancer Center and the National Cancer Institute, and collaborators from over 80 other ...

Similarities found in cancer initiation in kidney, liver, stomach, pancreas

February 21, 2018
Recent research at Washington University School of Medicine in St. Louis demonstrated that mature cells in the stomach sometimes revert back to behaving like rapidly dividing stem cells. Now, the researchers have found that ...

Research could change how doctors treat leukemia and other cancers fed by fat

February 21, 2018
Obesity and cancer risk have a mysterious relationship, with obesity increasing the risk for 13 types of cancer. For some cancers—including pediatric cancers—obesity affects survival rates, which are lower for people ...

New technique predicts gene resistance to cancer treatments

February 21, 2018
Yale School of Public Health researchers have developed a new method to predict likely resistance paths to cancer therapeutics, and a methodology to apply it to one of the most frequent cancer-causing genes.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.