Stem cells collected from fat may have use in anti-aging treatments

February 17, 2017, Perelman School of Medicine at the University of Pennsylvania

Adult stem cells collected directly from human fat are more stable than other cells - such as fibroblasts from the skin - and have the potential for use in anti-aging treatments, according to researchers from the Perelman School of Medicine at the University of Pennsylvania. They made the discovery after developing a new model to study chronological aging of these cells. They published their findings this month in the journal Stem Cells.

Chronological aging shows the natural life cycle of the - as opposed to cells that have been unnaturally replicated multiple times or otherwise manipulated in a lab. In order to preserve the cells in their natural state, Penn researchers developed a system to collect and store them without manipulating them, making them available for this study. They found collected directly from human fat - called adipose-derived stem cells (ASCs) - can make more proteins than originally thought. This gives them the ability to replicate and maintain their stability, a finding that held true in cells collected from patients of all ages.

"Our study shows these cells are very robust, even when they are collected from older patients," said Ivona Percec, MD, director of Basic Science Research in the Center for Human Appearance and the study's lead author. "It also shows these cells can be potentially used safely in the future, because they require minimal manipulation and maintenance."

Stem cells are currently used in a variety of anti-aging treatments and are commonly collected from a variety of tissues. But Percec's team specifically found ASCs to be more stable than other cells, a finding that can potentially open the door to new therapies for the prevention and treatment of aging-related diseases.

"Unlike other adult human stem cells, the rate at which these ASCs multiply stays consistent with age," Percec said. "That means these cells could be far more stable and helpful as we continue to study natural aging."

ASCs are not currently approved for direct use by the Food and Drug Administration, so more research is needed. Percec said the next step for her team is to study how chromatin is regulated in ASCs. Essentially, they want to know how tightly the DNA is wound around proteins inside these cells and how this affects aging. The more open the chromatin is, the more the traits affected by the genes inside will be expressed. Percec said she hopes to find out how ASCs can maintain an open profile with aging.

Explore further: Fat-derived stem cells hold potential for regenerative medicine

Related Stories

Fat-derived stem cells hold potential for regenerative medicine

November 9, 2012
(Medical Xpress)—As researchers work on reconfiguring cells to take on new regenerative properties, a new review from Penn Medicine plastic surgeons sheds additional light on the potential power of adipose-derived stem ...

Stem cells derived from different types of fat express different cell-surface markers

June 18, 2014
Mesenchymal stem cells (MSCs) have a natural ability to differentiate into various cell types, such as muscle, cartilage and bone. They can be classified according to their source and include adipose-derived stem cells (ASCs) ...

Stem cell source an important factor, impacting ability to treat myocardial infarction

February 13, 2013
When a research team from Denmark and Sweden compared the therapeutic capabilities of adipose-derived stem cells (ASCs) versus bone marrow-derived stem cells (BMSCs) obtained from a single 84 year-old male donor with ischemic ...

Repairing cartilage with fat: Problems and potential solutions

August 24, 2012
Stem cells isolated from fat are being considered as an option for treating tissue damage and diseases because of their accessibility and lack of rejection. New research published in BioMed Central's open access journal Stem ...

Team identifies protein that keeps blood stem cells healthy as they age

June 9, 2014
A protein may be the key to maintaining the health of aging blood stem cells, according to work by researchers at the Icahn School of Medicine at Mount Sinai recently published online in Stem Cell Reports. Human adults keep ...

Autologous adipose-derived stromal cells may ease knee OA

June 27, 2016
(HealthDay)—For patients with knee osteoarthritis, a single intra-articular injection of autologous adipose-derived stromal cells (ASCs) can reduce pain and inflammation, according to research published online May 23 in ...

Recommended for you

Calorie restriction trial in humans suggests benefits for age-related disease

March 22, 2018
One of the first studies to explore the effects of calorie restriction on humans showed that cutting caloric intake by 15% for 2 years slowed aging and metabolism and protected against age-related disease. The study, which ...

Boosting enzyme may help improve blood flow, fitness in elderly

March 22, 2018
As people age, their blood-vessel density and blood flow decrease, which is why it's harder to maintain muscle mass after 40 and endurance in the later decades, even with exercise. This vascular decline is also one of the ...

Scientists pinpoint cause of vascular aging in mice

March 22, 2018
We are as old as our arteries, the adage goes, so could reversing the aging of blood vessels hold the key to restoring youthful vitality?

Sulfur amino acid restriction diet triggers new blood vessel formation in mice

March 22, 2018
Putting mice on a diet containing low amounts of the essential amino acid methionine triggered the formation of new blood vessels in skeletal muscle, according to a new study from Harvard T.H. Chan School of Public Health. ...

Gradual release of immunotherapy at site of tumor surgery prevents tumors from returning

March 21, 2018
A new study by Dana-Farber Cancer Institute scientists suggests it may be possible to prevent tumors from recurring and to eradicate metastatic growths by implanting a gel containing immunotherapy during surgical removal ...

Cold can activate body's 'good' fat at a cellular level, study finds

March 21, 2018
Lower temperatures can activate the body's 'good' fat formation at a cellular level, a new study led by academics at The University of Nottingham has found.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.