Disrupting prostate cancer 'homing signal' could hold promise for new treatments

March 20, 2017
Micrograph showing prostatic acinar adenocarcinoma (the most common form of prostate cancer) Credit: Wikipedia

New King's College London research sheds light on the cellular mechanisms which enable cancer cells to escape the prostate and spread to other parts of the body.

Published today in the journal Oncogene, the findings suggest that it may one day be possible to therapeutically disrupt the 'homing signal' which causes to enter the bloodstream and form secondary tumours.

Prostate cancer is the most common cancer in men, with 40,000 new cases a year in the UK. Advanced 'metastatic' prostate cancer develops when cancer cells spread through the blood stream or lymphatic system, where they establish secondary tumours on lymph nodes or bone.

The metastatic form of the disease is currently incurable and despite advances in diagnosis, 30 per cent of men diagnosed with prostate cancer already have by the time they present at the clinic.

Clinicians are currently unable to predict which prostate tumours will become metastatic and establish secondary tumours in other tissues, and which ones will remain within the prostate. Identifying a molecular pathway that contributes to this process could guide treatment by helping clinicians distinguish between the two forms of cancer, and it could also assist with singling out targets for therapeutic intervention.

A team of scientists and clinicians from King's College London's Institute of Psychiatry, Psychology & Neuroscience (IoPPN) and the University of Oxford examined the cellular machinery of benign and malignant human prostate tissue and human prostate cancer cell lines.

They discovered a molecular pathway that organises the cytoskeleton (a skeletal frame which gives shape to a cell) and enables cells to respond to homing signals and invade other tissue outside the prostate. At the core of this pathway are two proteins called drebrin and EB3, which control the movement of cells through the outer layer of the prostate and into the bloodstream or lymphatic system (a system of thin tubes and that run throughout the body and are an important part of the immune system).

Senior author of the study, Professor Phillip Gordon-Weeks from the Centre for Developmental Neurobiology at the IoPPN, King's College London, said: 'Prostate cancer cells are attracted to the tissue they invade by homing signals released from these tissues. We've now identified the that guides this process and we think these homing signals could one day be disrupted therapeutically to stop cells escaping the primary tumour and invading the body to form .

'This research provides a really compelling example of how basic research can drive and inform translational research. Using animal models, we now need to examine how the homing signal could be manipulated using treatments.'

Explore further: Research helps explain why androgen-deprivation therapy doesn't work for many prostate cancers

Related Stories

Research helps explain why androgen-deprivation therapy doesn't work for many prostate cancers

January 5, 2017
Metastatic prostate cancer, or prostate cancer that has spread to other organs, is incurable. In new research published in the journal Science, Roswell Park Cancer Institute scientists have identified two gatekeeper genes ...

Predicting and preventing prostate cancer spread

January 25, 2017
University of Adelaide researchers have uncovered a new pathway which regulates the spread of prostate cancer around the body.

Marker for aggressive prostate cancer doubles up as a drug target

November 8, 2016
Researchers have discovered that a marker found on aggressive prostate cancer cells could also be used as a way to guide treatments to the cancer, according to new research presented at the National Cancer Research Institute ...

Researchers discover how cancer's 'invisibility cloak' works

September 26, 2016
UBC researchers have discovered how cancer cells become invisible to the body's immune system, a crucial step that allows tumours to metastasize and spread throughout the body.

Tumor cells in blood samples could predict prostate cancer spread

November 3, 2016
Researchers have found a group of circulating tumour cells in prostate cancer patient blood samples which are linked to the spread of the disease, according to new research presented at the National Cancer Research Institute ...

Men could be spared unnecessary treatment for prostate cancer with new detection method

April 6, 2016
Researchers are working to find a way to determine how serious prostate cancer is when first diagnosed to avoid unnecessary treatments, which can cause life long side effects and even death.

Recommended for you

MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer

September 25, 2017
A new magnetic resonance imaging (MRI) contrast agent being tested by researchers at Case Western Reserve University not only pinpoints breast cancers at early stages but differentiates between aggressive and slow-growing ...

Alternative splicing, an important mechanism for cancer

September 22, 2017
Cancer, which is one of the leading causes of death worldwide, arises from the disruption of essential mechanisms of the normal cell life cycle, such as replication control, DNA repair and cell death. Thanks to the advances ...

'Labyrinth' chip could help monitor aggressive cancer stem cells

September 21, 2017
Inspired by the Labyrinth of Greek mythology, a new chip etched with fluid channels sends blood samples through a hydrodynamic maze to separate out rare circulating cancer cells into a relatively clean stream for analysis. ...

Whole food diet may help prevent colon cancer, other chronic conditions

September 21, 2017
A diet that includes plenty of colorful vegetables and fruits may contain compounds that can stop colon cancer and inflammatory bowel diseases in pigs, according to an international team of researchers. Understanding how ...

Drug combination may improve impact of immunotherapy in head and neck cancer

September 21, 2017
Checkpoint inhibitor-based immunotherapy has been shown to be very effective in recurrent and metastatic head and neck cancer but only in a minority of patients. University of California San Diego School of Medicine researchers ...

New kinase detection method helps identify targets for developing cancer drugs

September 21, 2017
Purdue University researchers have developed a high-throughput method for matching kinases to the proteins they phosphorylate, speeding the ability to identify multiple potential cancer drug targets.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.