Epigenetic enzyme found to be lacking in some patients with Crohn's disease

March 3, 2017
High magnification micrograph of Crohn's disease. Biopsy of esophagus. H&E stain. Credit: Nephron/Wikipedia

A Massachusetts General Hospital (MGH) research team has found how a variant in an important epigenetic enzyme—previously associated by population-based genetic studies with Crohn's disease and other immune disorders—interferes with the action of the innate immune system, potentially upsetting the healthy balance between the microbial population of the gastrointestinal tract and the immune response. In their paper published in Science Immunology the team reports findings that SP140—an epigenetic reader protein that plays a critical role in determining whether or not target genes are expressed—is essential to suppressing inappropriate gene expression in macrophages, innate immune cells that are critical to maintaining intestinal balance.

"More than 400 enzymes write, read or erase the epigenome, and mutations in these enzymes are some of the most prevalent perturbations in cancers, prompting rigorous efforts to identify compounds that could inhibit their function and reset gene expression," says Kate Jeffrey, PhD of the MGH Gastrointestinal Unit and the Center for the Study of Inflammatory Bowel Disease, corresponding author of the Science Immunology report. "Our knowledge of epigenomic enzyme mutations in immune-mediated disease is lagging well behind the cancer field, and our study—the first to examine the function of SP140 in any detail—shows how its loss in Crohn's disease triggers intestinal inflammation."

SP140 is predominantly expressed in immune cells, and a variant form of the gene has been associated with Crohn's disease, multiple sclerosis and chronic lymphocytic leukemia. Prior to this study both the normal function of the SP140 protein and how the gene variant affected the protein and caused disease were unknown. In a series of experiments, Jeffrey's team showed that the unaltered form of SP140 is required to maintain the appropriate expression of genes that define the identity and function of macrophages. The immune disorder variant—characterized by 17 individual sequence changes - resulted in a loss of SP140 protein that compromised the ability of macrophages to respond to microbial signals.

The researchers also showed that reducing SP140 expression in the immune cells of a mouse model of colitis increased . In addition, examining intestinal biopsy samples from a group of Crohn's disease patients revealed that those in whom SP140 expression was reduced responded better to anti-TNF (tumor necrosis factor) therapy—a treatment for inflammatory conditions that is effective in only about half of Crohn's patients - than did patients with typical SP140 levels.

"Finding this correlation between lower intestinal levels of SP140 and a better response to anti-TNF represents a potential precision medicine strategy for tailoring anti-TNF-like therapies to Crohn's patients carrying the variant form of SP140," says Jeffrey, who is an assistant professor of Medicine at Harvard Medical School. "Our study may also lead to better therapies by highlighting the critical role of epigenetic mechanisms for intestinal health. Although directly targeting SP140 would not be a good option, since its loss is detrimental to intestinal health, leveraging other epigenetic enzyme inhibitors that promote protective innate immune responses in the intestine could be a real therapeutic option"

Additional research is needed to better understand exactly how SP140 normally limits the expression of inappropriate genes and whether this function is limited to macrophages or also occurs in other SP140-expressing , Jeffrey notes. Her team also hopes to investigate the role of the Crohn's-associated SP140 variant in multiple sclerosis and , along with identifying other epigenetic enzymes that may be therapeutically targetable in inflammatory bowel disease and other immune-driven disorders.

Explore further: Crohn's disease risk and prognosis determined by different genes, study finds

More information: "Maintenance of macrophage transcriptional programs and intestinal homeostasis by epigenetic reader SP140," Science Immunology, immunology.sciencemag.org/look … 6/sciimmunol.aag3160

Related Stories

Crohn's disease risk and prognosis determined by different genes, study finds

January 9, 2017
Researchers have identified a series of genetic variants that affect the severity of Crohn's disease, an inflammatory bowel disease - but surprisingly, none of these variants appear to be related to an individual's risk of ...

New insight for developing more effective drugs to combat inflammatory bowel disease

December 21, 2016
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the intestine that includes Crohn's disease and ulcerative colitis. It is commonly treated with one of several available biological drugs that block an ...

Long noncoding RNA found to quell inflammation

July 14, 2016
A long non-coding RNA (lincRNA) - called lincRNA-EPS - responsible for regulating innate immunity has been identified by a team of scientists at the University of Massachusetts Medical School. Abundantly found in macrophages, ...

Recommended for you

Early trials show potential for treating hay fever with grass protein fragments

October 13, 2017
Protein fragments taken from grass can help protect hay fever patients from allergic reactions to pollen grains.

Researchers find mechanism for precise targeting of the immune response

October 13, 2017
The immune system checks the health of cells by examining a kind of molecular passport. Sometimes, cells present the wrong passport, which can lead to autoimmune diseases, chronic inflammations or cancer. Scientists of the ...

Enzyme behind immune cell response revealed

October 12, 2017
Monash University researchers have revealed the role played by an enzyme that is pivotal to the process of clearing infection in the body. Moreover, they suggest that the enzyme may be a potential target for drug development ...

Calcium lets T cells use sugar to multiply and fight infection

October 11, 2017
A calcium signal controls whether immune cells can use the nutrients needed to fuel their multiplication into a cellular army designed to fight invading viruses.

New genetic clue to peanut allergy

October 11, 2017
Canadian researchers have pinpointed a new gene associated with peanut allergy, offering further evidence that genes play a role in the development of food allergies and opening the door to future research, improved diagnostics ...

Novel immune cells control neurons responsible for fat breakdown

October 9, 2017
The biological causes underlying obesity have been under intense scrutiny, with studies suggesting a link between the nervous and the immune systems. Now, in a breakthrough study to be published in Nature Medicine on 9 October, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.