Epigenetic regulation of face formation

March 30, 2017
Epigenetic regulation of face formation
Credit: jazzia / 123RF Stock Photo

Each face is unique, even though the genes controlling facial shape are almost identical in every individual. Filippo Rijli and his team at the Friedrich Miescher Institute for Biomedical Research (FMI) have discovered an epigenetic mechanism that regulates face morphogenesis. During early development, the neural crest cells that give rise to the various facial structures maintain chromatin plasticity, with all the genes involved remaining poised to respond to local cues. Once the cells are exposed to these environmental signals, a switch from a poised to an active chromatin state occurs, inducing position specific transcriptional programs that give rise to the chin, cheekbones or forehead.

A pronounced forehead, a button nose, high cheekbones or almond-shaped eyes – each face is unique, despite the fact that the controlling the shape of craniofacial structures are almost identical in every individual. So how do these distinctive features arise from the same subset of genes?

The generation of distinctly shaped craniofacial structures assembled into a harmonious face depends on a specialized cell type – , which give rise to most of the skull and face cartilage and bones. During early embryonic development, the neural migrate from the developing neural tube to the prospective head region. Premigratory neural crest cells are naive multipotent cells, which become committed to a cartilaginous fate once they reach their final destination.

Neural crest cells also acquire specific "positional" identities (related to their position in the developing face), which define the shapes of the bones and cartilage that will form the mandible and chin, cheekbones, nose or forehead. This positional identity is acquired during the cells' migration, depending on the path taken and their interactions with the local environment. However, even after migration, positional identity is not irreversibly fixed, and neural crest cells maintain a degree of plasticity.

To date, it has not been clear how neural crest cells can maintain plasticity through migration, while being poised to respond to local cues and induce position-specific transcriptional programs.

Filippo Rijli and his group at the FMI, together with FMI computational biologist Michael Stadler, have now elucidated how this process is enabled by epigenetic regulation of chromatin organization.

In a study published in Science, they describe a specific chromatin organization whereby neural crest cells remain transcriptionally poised until the end of their migration, thus maintaining the potential to give rise to all the different facial elements, irrespective of their final position.

First author Maryline Minoux, a visiting scientist in the Rijli lab and professor at the Strasbourg University Faculty of Dental Medicine, explains: "We compared the chromatin profile of subpopulations of neural crest cells in different positions before and after migration. In the postmigratory neural crest cells, the promoters of the differentially silenced genes – i.e. genes not expressed in some populations, but expressed in others – were maintained in a bivalent configuration marked by both repressive H3K27me3 and activating H3K4me2 epigenetic histone modifications. These genes were thus poised for activation. Surprisingly, this poised configuration was already present in the premigratory neural crest cells." Once the cells receive specific environmental signals, they lose the repressive H3K27me3 mark and start the position-specific transcriptional program.

In addition, the authors found that the poised chromatin state is regulated by the Ezh2 component of the Polycomb Repressive Complex 2, a known remodeler during embryonic development. Ezh2 specifically adds methyl groups to lysine 27 of histone H3.

Rijli comments: "This is a novel conceptual framework for understanding how different facial features arise. Epigenetic poising may allow cranial neural crest cells to rapidly adapt their response to local variations in environmental signaling, thus potentially explaining differences in facial shape between individuals."

Explore further: Scientists transform lower-body cells into facial cartilage

More information: Minoux M, Holwerda S, Vitobello A, Kitazawa T, Kohler H, Stadler MB, Rijli FM, (2017) Gene bivalency at polycomb domains regulates cranial neural crest positional identity. Science advance online publication, science.sciencemag.org/cgi/doi … 1126/science.aal2913

Related Stories

Scientists transform lower-body cells into facial cartilage

June 27, 2016
Caltech scientists have converted cells of the lower-body region into facial tissue that makes cartilage, in new experiments using bird embryos. The researchers discovered a "gene circuit," composed of just three genes, that ...

YAP protein plays a crucial role in the development of the human neural crest

March 22, 2016
To grow or to specialise? To remain stationary or initiate migration? How do cells know what to do and how they should develop? The Hippo/YAP signalling pathway plays a crucial role when the cells of the neural crest – ...

Scientists ID key fetal cells vulnerable to Zika

September 29, 2016
(HealthDay)—The devastating mosquito-borne Zika virus can infect cells that play a role in skull development, a new study finds.

Recommended for you

New approach to studying chromosomes' centers may reveal link to Down syndrome and more

November 20, 2017
Some scientists call it the "final frontier" of our DNA—even though it lies at the center of every X-shaped chromosome in nearly every one of our cells.

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.